2.2.3. **Electrostatics in \(d \) dimensions (continued)**

This is a continuation of Problem #2.2.3.

b) Calculate and plot the potential \(\varphi \) and the field \(\mathbf{E} \) for \(d = 2 \) for the case of a homogeneously charged disk, \(\rho(\mathbf{x}) = \rho_0 \Theta(r_0 - |\mathbf{x}|) \).

hint: It is easiest to proceed as in the 3-d case, see Problem 2.2.2.

note: This problem plays an important role in the theory of the Kosterlitz-Thouless transition, for which part of the 2016 Nobel prize in Physics was awarded.

c) The same for \(d = 1 \) for the case of a uniformly charged rod, \(\rho(x) = \rho_0 \Theta(x_0^2/4 - x^2) \).

hint: Integrate Poisson’s formula directly. \(\text{(8 points)} \)

2.2.4. **Helmholtz equation**

Find the most general Fourier transformable solution of the Helmholtz equation

\[
(\kappa^2 - \nabla^2) \varphi(\mathbf{x}) = 4\pi \rho(\mathbf{x})
\]

in terms of an integral.

hint: The answer is a generalization of Poisson’s formula. \(\text{(3 points)} \)

2.3.1. **Quadrupole moments**

a) Consider a localized charge density as in ch.2 §3.1 and carry the expansion of the potential to \(O(1/r^3) \).

Show that the potential to that order is given by

\[
\varphi(\mathbf{x}) = \frac{1}{r} Q + \frac{1}{r^3} \mathbf{x} \cdot \mathbf{d} + \frac{1}{r^5} \sum_{i,j} x_i x_j Q_{ij} + \ldots
\]

with \(Q \) the total charge and \(\mathbf{d} \) the dipole moment, and determine the quadrupole tensor \(Q_{ij} \).

b) Show that the quadrupole tensor is independent of the choice of the origin provided the total charge and the dipole moment vanish.

c) Consider a homogeneously charged ellipsoid \((x/a)^2 + (y/b)^2 + (z/c)^2 \leq 1\) and calculate the quadrupole tensor \(Q_{ij} \) with respect to the ellipsoid’s center. Check to make sure that the result for \(Q_{ij} \) is traceless.

d) Let the charge density be invariant under rotations about the z-axis through multiples of an angle \(\alpha \), with \(|\alpha| < \pi \). Show that in this case the quadrupole tensor has the form

\[
\begin{pmatrix}
q & 0 & 0 \\
0 & q & 0 \\
0 & 0 & -2q
\end{pmatrix}
\]

Make sure your result from part c) conforms with this for the special case \(a = b \).

e) Consider the homogeneously charged ellipsoid from part c) and calculate the quadrupole moments \(Q_{2m} \) as defined in ch.2 §3.5.

\(\text{(10 points)} \)