2.3.5. Field due to distant charges
Consider the electric field generated by a charge density $\rho(y)$ that vanishes inside a sphere with radius r_0: $\rho(y) = 0$ for $|y| \leq r_0$. Show that

a) If ρ is invariant under parity operations, $\rho(-y) = \rho(y)$, then the electric field at the origin vanishes.

b) If $\rho(y)$ is invariant under rotations about the z-axis through multiples of an angle α with $|\alpha| < \pi$, then the field-gradient tensor at the origin has the form $\varphi_{ij}(x = 0) = \begin{pmatrix} \varphi & 0 & 0 \\ 0 & \varphi & 0 \\ 0 & 0 & -2\varphi \end{pmatrix}$.

c) If $\rho(y)$ has cubic symmetry, i.e., if $\rho(y)$ is invariant under rotations through $\pi/2$ about any of the three axes x, y, and z, then the field-gradient tensor at the origin vanishes.

(6 points)

2.3.7. Electrostatic interaction: Quadrupole in an external electric field
Consider the following classical model for a nuclear quadrupole moment in a crystal lattice: A rectangular parallelepiped (height A, length and width B) carries a charge e at each of its eight corners. At the center of the parallelepiped is a homogeneously charged spheroid (charge Q, semi-axes a and b). The symmetry axis of the spheroid forms an angle θ with the A-axis of the parallelepiped. The center of the spheroid is fixed, but the angle θ can vary. Let $A \gg a$, $B \gg b$.

a) Calculate the electrostatic interaction energy U of this system to quadrupolar order. Show that U can be expressed in terms of e, the lattice constants A and B, and the quadrupole moment Q_{33} of the spheroid in the coordinate system of the lattice.

b) Calculate the quadrupole moment Q'_{33} of the spheroid in its principal-axes system, and then calculate Q_{33} by transforming into the lattice system. Express U as a function of the angle θ.

hint: In general, lining up the principal-axes systems would require three Euler angles. However, due to the symmetries of the problem Q'_{33} and Q_{33} in the present case are related by only one angle, viz., θ.

c) Find the equilibrium positions of the spheroid. Make sure to distinguish the cases of prolate and oblate spheroids ($a > b$ and $a < b$, respectively), as well as between the cases $A > B$ and $A < B$.

(15 points)