2.2.3. **Electrostatics in d dimensions (continued)**

This is a continuation of Problem #2.2.3.

b) Calculate and plot the potential ϕ and the field E for $d = 2$ for the case of a homogeneously charged disk, $\rho(x) = \rho_0 \Theta(r_0 - |x|)$.

hint: It is easiest to proceed as in the 3-d case, see Problem 2.2.2.

note: This problem plays an important role in the theory of the Kosterlitz-Thouless transition, for which part of the 2016 Nobel prize in Physics was awarded.

c) The same for $d = 1$ for the case of a uniformly charged rod, $\rho(x) = \rho_0 \Theta(x_0^2/4 - x^2)$.

hint: Integrate Poisson’s formula directly.

(8 points)

2.2.4. **Helmholtz equation**

Find the most general Fourier transformable solution of the Helmholtz equation

$$(\kappa^2 - \nabla^2) \varphi(x) = 4\pi \rho(x)$$

in terms of an integral.

hint: The answer is a generalization of Poisson’s formula.

(3 points)

2.3.1. **Quadrupole moments**

a) Consider a localized charge density as in ch.2 §3.1 and carry the expansion of the potential to $O(1/r^3)$.

Show that the potential to that order is given by

$$\varphi(x) = \frac{1}{r} Q + \frac{1}{r^3} x \cdot d + \frac{1}{r^5} \sum_{i,j} x_i x_j Q_{ij} + \ldots$$

with Q the total charge and d the dipole moment, and determine the quadrupole tensor Q_{ij}.

b) Show that the quadrupole tensor is independent of the choice of the origin provided the total charge and the dipole moment vanish.

c) Consider a homogeneously charged ellipsoid $(x/a)^2 + (y/b)^2 + (z/c)^2 \leq 1$ and calculate the quadrupole tensor Q_{ij} with respect to the ellipsoid’s center. Check to make sure that the result for Q_{ij} is traceless.

d) Let the charge density be invariant under rotations about the z-axis through multiples of an angle α, with $|\alpha| < \pi$. Show that in this case the quadrupole tensor has the form

$$\begin{pmatrix} q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & -2q \end{pmatrix}.$$

Make sure your result from part c) conforms with this for the special case $a = b$.

e) Consider the homogeneously charged ellipsoid from part c) and calculate the quadrupole moments Q_{2m} as defined in ch.2 §3.5.

(10 points)