2.3.5. **Field due to distant charges**

Consider the electric field generated by a charge density $\rho(y)$ that vanishes inside a sphere with radius r_0: $\rho(y) = 0$ for $|y| \leq r_0$. Show that

(a) If ρ is invariant under parity operations, $\rho(-y) = \rho(y)$, then the electric field at the origin vanishes.

(b) If $\rho(y)$ is invariant under rotations about the z-axis through multiples of an angle α with $|\alpha| < \pi$, then the field-gradient tensor at the origin has the form

$$\phi_{ij}(x = 0) = \begin{pmatrix} \varphi & 0 & 0 \\ 0 & \varphi & 0 \\ 0 & 0 & -2\varphi \end{pmatrix}$$

(c) If $\rho(y)$ has cubic symmetry, i.e., if $\rho(y)$ is invariant under rotations through $\pi/2$ about any of the three axes x, y, and z, then the field-gradient tensor at the origin vanishes.

(6 points)

2.3.7. **Electrostatic interaction: Quadrupole in an external electric field**

Consider the following classical model for a nuclear quadrupole moment in a crystal lattice: A rectangular parallelepiped (height A, length and width B) carries a charge e at each of its eight corners. At the center of the parallelepiped is a homogeneously charged spheroid (charge Q, semi-axes a and b). The symmetry axis of the spheroid forms an angle θ with the A-axis of the parallelepiped. The center of the spheroid is fixed, but the angle θ can vary. Let $A \gg a$, $B \gg b$.

(a) Calculate the electrostatic interaction energy U of this system to quadrupolar order. Show that U can be expressed in terms of e, the lattice constants A and B, and the quadrupole moment Q_{33} of the spheroid in the coordinate system of the lattice.

(b) Calculate the quadrupole moment Q'_{33} of the spheroid in its principal-axes system, and then calculate Q_{33} by transforming into the lattice system. Express U as a function of the angle θ.

hint: In general, lining up the principal-axes systems would require three Euler angles. However, due to the symmetries of the problem Q'_{33} and Q_{33} in the present case are related by only one angle, viz., θ.

(c) Find the equilibrium positions of the spheroid. Make sure to distinguish the cases of prolate and oblate spheroids ($a > b$ and $a < b$, respectively), as well as between the cases $A > B$ and $A < B$.

(15 points)
\[\psi(x) = \int \frac{d^3k}{|x-k|^4} \quad \frac{\gamma(k)}{|x-k|^2} = \psi(x=0) + \psi \nabla \psi \mid_{x=0} + \frac{1}{2} \nabla \cdot \nabla \psi \mid_{x=0} + \ldots \]

\[= \psi_0 - \nabla \cdot \mathbf{E} + \frac{1}{2} \nabla \cdot \nabla \psi \mid_{x=0} + \ldots \]

\[= \psi_0 + \psi_k(x) + \psi_L(x) + \ldots \]

\[\text{a) } \gamma(k) \sim \gamma(-k) \rightarrow \psi(-x) = \int d^3k \frac{\gamma(k)}{|x-k|^2} = \int d^3k \frac{\gamma(-k)}{|x-k|^2} = \psi(x) \]

\[\rightarrow \text{All } m \text{ odd } \psi \text{ vanish, & pochier } \mathbf{E} = 0 \]

\[\text{b) } \psi_{ij} \text{ is not symmetric } \rightarrow \text{ ADerived RE} \text{ale & let } \psi_{ij} \text{ is diagonal} \]

\[\phi(x) \text{ obeys Laplace's eq, & } |x| < r_0 \]

\[\rightarrow \nabla \phi = 0 \]

\[\rightarrow \phi_{ij} \text{ has the form } \phi_{ij} = \begin{pmatrix} \phi_+ + \phi_- & 0 & 0 \\ 0 & \phi_+ - \phi_- & 0 \\ 0 & 0 & -2\phi_+ \end{pmatrix} \]

\[\text{where } \phi_0 = \frac{1}{2} (\phi_{xx} - \phi_{zz}) \]

\[\rightarrow \psi(x) = \frac{1}{2} x^2 \nabla^2 \psi (\phi_+ + \phi_-) + \frac{1}{2} x^2 \nabla \cdot \nabla \psi (\phi_+ - \phi_-) + \frac{1}{2} x^2 \nabla \cdot \nabla \psi (-2\phi_+) \]

\[= \frac{1}{2} x^2 \left[(1 - 2\mu^2) \phi_+ + \mu^2 x^2 \left(\phi_+ + \phi_- \right) \right] \]

Rational invariance of \(\phi(x) \) implies rational invariance of \(\psi(x) \), & \(\nabla \phi \) pochier of \(\psi_L(x) \)
\[\psi_2(r, \varphi, \psi + \delta \varphi) = \frac{1}{2} r^2 \left[1 - 2m^2 \right] \psi_+ + \frac{1}{2} r^2 \left[1 - 2m^2 \right] \psi_- \]

\[\psi_2(r, \varphi, \psi) = \psi_2(r, \varphi, \psi) \]

\[\psi_+ \left(2 \psi + 2 \delta \varphi \right) = \psi_+ \left(2 \psi + 2 \varphi \right) \rightarrow \psi_+ = 0 \]

(1) Let \(\mathcal{L} \) be a \(\mathbb{Z}_2 \)-invariant action rotating \(\varphi \) about any of the three axes \(x, y, z \).

(2) \(\psi_+ = 0 \) due to \(\mathcal{L} \)-invariance of \(\psi_+ \).

(3) \(\mathcal{L} \)-invariance of \(\mathcal{L} \) implies \(\mathcal{L} \)-invariance of \(\varphi(x) \).

\[\psi_2(r, \varphi + \delta \varphi, \psi) = \frac{1}{2} r^2 \psi_+ \left[1 - 2m^2 \right] \varphi + \frac{1}{2} r^2 \psi_- \left[1 - 2m^2 \right] \varphi \]

\[\psi_+ \left(2 \psi + 2 \delta \varphi \right) = \psi_+ \left(2 \psi + 2 \varphi \right) \rightarrow \psi_+ = 0 \rightarrow \psi_+ = 0 \]
2.27. (a) Consider the problem due to two charges:

\[\varphi(x) = e \frac{\xi}{x_1^{(21)}} \left(\frac{1}{x_1^{(21)}} \right) \quad \text{when} \quad x_1^{(21)} = \frac{1}{2} \left(\frac{x_1}{x_1} \right) \]

We have

\[\varphi_0 = \varphi(x=0) = e \frac{\xi}{x_1^{(21)}} \left(\frac{1}{x_1^{(21)}} \right) = e \frac{\xi}{1^{2} + 2 \xi^{2}} = \frac{16e}{1^{2} + 2 \xi^{2}} \]

\[E = -\nabla \varphi(x=0) = \frac{\xi}{x_1^{(21)}} - \frac{2(21)}{x_1^{(21)}} = 0 \]

\[\varphi_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} \varphi \bigg|_{x=0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\varphi \\ 0 & -\varphi & 0 \end{pmatrix} \]

b) symmetry, see Problem 2.3.5 b)

\[\psi = \psi_{ij} = \frac{\partial^2}{\partial x_i} \left(e \frac{\xi}{x_1^{(21)}} \right) \left(\frac{1}{x_1^{(21)}} \right) = e \left(\frac{\xi^{(21)}}{x_1^{(21)}} \right) \left(\frac{1}{x_1^{(21)}} \right) \]

Minin \(r_0 := \sqrt{4^2 + \xi^2} \rightarrow l^{(21)} = \xi r_0 \)

\[\Rightarrow \varphi_0 = \frac{16e}{r_0} \]

\[\psi = e \left(\frac{\xi^{(21)}}{r_0} \right) \left(\frac{1}{r_0} \right) \]

\[= e \frac{1}{r_0^2} \left(\frac{2 \xi^{(21)} + 8 \xi_1 - 2 \xi_0^2}{2 \xi^{(21)} + 8 \xi_1 - 2 \xi_0^2} \right) = \frac{2e}{r_0^2} \left(\frac{2 \xi^{(21)} + 8 \xi_1 - 2 \xi_0^2}{2 \xi^{(21)} + 8 \xi_1 - 2 \xi_0^2} \right) = \frac{2e}{r_0^2} \left(\xi^{(21)} \right) \]

\[\Rightarrow \mu = \varphi_0 \xi + \frac{1}{2} \left(\psi_a \psi_a + \psi_a \psi_a - 2 \psi \psi_a \right) \]

\[= \varphi_0 \xi - \psi \psi_a \]

\[\sum_{a} \psi_{aa} = 0 \quad \Rightarrow \varphi_0 \xi - \psi \psi_a = 0 \]

\[\sum_{a} \psi_{aa} = \varphi_0 \xi \]
mark: the \(Q_{ij} \) is the quadrupole moment of the spherical
lattice coordinate system!

b) in the principal-axis system of the spherical quadrupole,
the tensor has the form

\[
Q'_{ij} = \begin{pmatrix}
\frac{9}{4} & 0 & 0 \\
0 & \frac{9}{4} & 0 \\
0 & 0 & -2g
\end{pmatrix}
\]

Transform to the lattice system by means of rotation
matrices (angles of 10/21) \(\phi \)

\[
Q_{ij} = \Sigma Q'_{ij} D_{\phi} D_{\psi} D_{\chi}
\]

\[
Q_{22} = Q'_{22} D_{\psi}^2 + Q'_{22} D_{\phi} D_{\chi} + Q'_{22} D_{\phi}^2 D_{\chi}^2
\]

\[
= g \left(D_{\psi}^2 \right) + \left(D_{\phi} D_{\chi} \right)^2 - 2g \left(D_{\phi}^2 \right) \\
= \frac{1}{4} \left[\left(D_{\psi}^2 \right) \left(D_{\phi}^2 \right) \left(D_{\chi}^2 \right) \right]
\]

Now \(Q_{ij} \) is an orthogonal tensor \(\Rightarrow D_{\psi}^2 + D_{\phi}^2 + D_{\chi}^2 = 1 \)

and \(\phi \) must align the \(2' \)-axis with the \(\phi \)-axis \(\rightarrow D_{\phi} = 0 \)

\[
Q_{22} = g \left[1 - D_{22}^2 - 2D_{22}' \right] = g \left[1 - 2u_2 \right]
\]

Finally, Problem 2.3.1 with \(q = \frac{Q}{10} \left(6^2 - 5^2 \right) \)

\[
U = Q \alpha - \frac{2e}{\alpha} \left(\begin{pmatrix} 6^2 \\ -5^2 \end{pmatrix} \right) g \left(1 - 2u_2 \right)
\]

\[
= Q \alpha + \frac{2e}{\alpha} \left(\begin{pmatrix} 6^2 \\ -5^2 \end{pmatrix} \right) \left(6^2 - 5^2 \right) \left(2u_2 \right)
\]
9) \(\frac{1}{x-1} \) is minimum for \(x = 0 \)

\[\Rightarrow \quad x = \frac{1}{2} \]

minimum for \(x = \pm \frac{1}{2} \)

\[\Rightarrow \quad x = 0, \frac{1}{2} \]

If \(c > 0 \) \(\Rightarrow \) \(u \) is minimum for

\[x = \frac{1}{2} \quad \text{if} \quad (a^2 - c^2)(c^2 - b^2) > 0 \]

\[x = 0 \quad \text{if} \quad (a^2 - c^2)(c^2 - b^2) < 0 \]

prolate spheroid \((a > b)\)

(major)

oblate \((a < b)\): flips the two cones

(disc)

\(c < 0 \): flips the two cones each