1. **Minkowski tensors**

Let F be an antisymmetric rank-2 tensor in the Minkowski space M_4 with metric $g = (+, -, -, -)$.

a) Write F in terms of its covariant components $F_{\mu\nu}$. How many independent components are there?

b) Express the contravariant components $F^{\mu\nu}$, and the mixed components F^{μ}_{ν} and F^{ν}_{μ}, in terms of the covariant ones.

c) What are the transformation properties of the objects $I = F^{\mu\nu}F_{\mu\nu}$ and $J = \epsilon^{\mu\nu\kappa\lambda}F_{\mu\nu}F_{\kappa\lambda}$ under normal coordinate transformations? (Here $\epsilon^{\mu\nu\kappa\lambda}$ is the 4-dimensional Levi-Civita symbol.)

(6 points)

2. **Complex analysis**

note: If, in any part of this problem, parts of the contour you wish to integrate over obviously do not contribute, say so and give a simple argument for why that’s true. You don’t have to prove that it’s true. Similarly, if you feel that the analytic structure of a function is obvious, you can just state what it is without proof.

a) Consider the complex function

$$f(z) = \frac{1}{(1 + z^2)^4}$$

Briefly discuss the analytic structure of this function, classify the singularities, and find the residues the poles.

b) Construct the Laurent series for f up to and including the constant term in the vicinity of a pole of your choice and verify the value of the residue you found in part a).

c) Use the residue theorem to evaluate the integral

$$I = \int_0^\infty dx \ f(x)$$

d) Consider the integral

$$J = \int_{-\infty}^\infty dx \ \frac{\cos x}{1 - x^2}$$

Interpret this integral in a Cauchy principal value sense (see Problem 2.3.2 e)) and evaluate it using complex analysis. If you believe that parts of your contours do not contribute, state briefly why that’s the case; you don’t have to formally prove it.

(16 points)