1.4.2. The space of rank-2 tensors

a) Prove the theorem of ch.1 §4.3: Let \(V \) be a vector space \(V \) of dimension \(n \) over \(K \). Then the space of rank-2 tensors, defined via bilinear forms \(f : V \times V \to K \), forms a vector space of dimension \(n^2 \).

b) Consider the space of bilinear forms \(f \) on \(V \) that is equivalent to the space of rank-2 tensors, and construct a basis of that space.

hint: On the space of tensors, define a suitable addition and multiplication with scalars, and construct a basis of the resulting vector space.

(5 points)

1.4.3. Cross product of 3-vectors

Let \(x, y \in \mathbb{R}^3 \) be vectors, and let \(\epsilon_{ijk} \) be the Levi-Civita symbol. Show that the (covariant) components of the cross product \(x \times y \) are given by

\[
(x \times y)_i = \epsilon_{ijk}x^jy^k
\]

(1 point)

1.4.5. \(\mathbb{R} \) as a metric space

Consider the reals \(\mathbb{R} \) with \(\rho : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) defined by \(\rho(x, y) = |x - y| \). Show that this definition makes \(\mathbb{R} \) a metric space.

(3 points)

1.4.6. Limits of sequences

a) Show that a sequence in a metric space has at most one limit.

hint: Assume there are two limits, and use the triangle inequality to show that they must be the same.

b) Show that every sequency with a limit is a Cauchy sequence.

(3 points)