2.2.1. Lindhard function
Consider the function \(f : \mathbb{C} \to \mathbb{C} \) (which plays an important role in the theory of many-electron systems) defined by
\[
f(z) = \log \left(\frac{z-1}{z+1} \right)
\]
The spectrum \(f'' : \mathbb{R} \to \mathbb{R} \) and the reactive part \(f' : \mathbb{R} \to \mathbb{R} \) of \(f \) are defined by
\[
f''(\omega) := \frac{1}{2i} \left[f(\omega + i0) - f(\omega - i0) \right], \quad f'(\omega) := \frac{1}{2} \left[f(\omega + i0) + f(\omega - i0) \right]
\]
where \(f(\omega \pm i0) := \lim_{\epsilon \to 0} f(\omega \pm i\epsilon) \).
a) Show that \(f' \) and \(f'' \) are indeed real-valued functions.
b) Determine \(f'' \) and \(f' \) explicitly, and plot them for \(-3 < \omega < 3\).
c) Show that
\[
\int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{f''(\omega)}{\omega - z} = f(z)
\]
(5 points)

2.2.2. Another causal function
The function considered in Problem 2.2.1 is an example of a class of complex functions called causal functions that are important in the theory of many-particle systems. Another member of this class is
\[
g(z) = \sqrt{z^2 - 1} - z
\]
Determine the spectrum and the reactive part of \(g(z) \), and plot them for \(-3 < \omega < 3\).
(3 points)

2.2.3. Proof of the Cauchy-Riemann Theorem
Prove the Cauchy-Riemann theorem from ch.2 §2.2:
a) Let \(f(z) = f'(z', z'') + if''(z', z'') \) be analytic everywhere in \(\Omega \subseteq \mathbb{C} \). Show that the Cauchy-Riemann equations
\[
\frac{\partial f'}{\partial z'} = \frac{\partial f''}{\partial z''} \quad \text{and} \quad \frac{\partial f'}{\partial z''} = -\frac{\partial f''}{\partial z'}
\]
hold \(\forall z \in \Omega \).
\textit{hint:} Start with the difference quotient \((f(z) - f(z_0))/(z - z_0)\) and require that its limit for \(z \to z_0 \) exists if \(z_0 \) is approached on paths either parallel to the real axis, or parallel to the imaginary axis.
b) Let the Cauchy-Riemann equations hold in a point \(z_0 \in \Omega \). Show that this implies that \(f \) is analytic in the point \(z_0 \).
\textit{hint:} Consider \(f(z) - f(z_0) \) and expand \(f'(z', z'') \) and \(f''(z', z'') \) in Taylor series about \(z_0 \).
(8 points)
2.2.4. Exponentials

Consider the exponential function

\[f(z) = e^z = e^{z'} + iz'' \]

a) Show that \(f(z) \) is analytic everywhere in \(C \).

b) Convince yourself explicitly that the real and imaginary parts of \(f \) obey Laplace’s differential equation.

c) Show that \(df/dz|_z = f(z) \).

d) Show that \(\cos z \) and \(\sin z \), defined by

\[\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) \quad , \quad \sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) \]

are analytic everywhere in \(C \), and that

\[\frac{d}{dz} \cos z = -\sin z \quad , \quad \frac{d}{dz} \sin z = \cos z . \]

(4 points)