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Chapter 10

Tensor Calculus

By C. LANCZ0S, Dublin Institute for Advanced Studies, Dublin, Eire

PTNUP T S ———

1. Scalars, ¥ectors, Tensors

Certain quantities i1 physics scem to have ab-
solute suenificance while other quantities can be
delined ondy velalive Lo« cevtatn frame of reference.
Mass, density, rempernture, and speeific heat are
represented by pure nwnbers, assigned Lo certain
physical  eategories.  SBuch  quantities  are  enlled
sealars.  Other  guantities, bowever, involve the
dimensions of space.  In a one~limensional world
adl measurements would be reducible 1o scalars, but
in a two- or higher-dimensional manifold quantities
oeeur which cannot be mensured by pure numbers,
They involve magnitude and direction and require
a definite frame of reference for analvtical char-
acterization, o4, & veetor may be visualized as an
arrow put in spaee  The invardant deseription of
such directed quantities gave rise to o rolatively
recently developed branch of mathematicai physics,
called absolute caleulus or lensor ealeufus. In it
veclors are a special case of n more general class of
dirccted quantities, called tensors, which play a
fundamental role in the functional relations of the
physical universe.

2. Analviic Operations with Vectors

A vector may be visualized as an arrow which hasg
magnitude and direction.  In vector anafvsis, Chap.
0, such a quantity is represented by an algebraic
symbol with suitable properties. Certain geometri-
cal operations on two vectors are denoted by A + B,
or A —B,or A-B, or A X B. The tools of ordinary
algebra are thus put inte the service of dirceted
quantities.  DifTerentiation and integration are also
applicable 1o certain operstions with vectors,

In this proecdure some of the basic postulates of
ordinary algebra have to be saerificed. Vector
algebra is less simple than ordinary aigebra by re-
quiring two kinds of mudtiplieations: the scalar
product A-B and the vecfor product A X B. This
complication can be avoided by the use of Hamillon’s
qualernions which combine the two kinds of mul-
tiplications into one single operation: the product AB
of the two quaternions A and B. Even so the com-
mutative law of ordinary multiplication AB = BA
has to be abandoned, slthough the other postulates
of aigebra are retained.
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3. Unit Vectors; Components

A different and more far-reaching approach is
obtained by introducing o system of wutually per-
pendicular unit vectors for the analysis of vectors.
In space of three dimensions three such veectors are
necessary and sufficient for the deseription of an
arbitrary vector A, For analviieal purposes the
three-dimensional aature of physieal space s of
aeeidental significance and can be replueed by the
eoncept of an a=dimensional space in which n mutueally
perpendictlar unit vectors of the length 1:

U, U, ... ,U, (10.1)

are sufficient for the representation of an arbitrary
vector A, The veetor A s now obtained as o linear
guperposition of the veetors (10.1):

A=alU a0+ - - 4+ a U,
The quantitics

(10.2)

ay,04, - . o C8u

2 (10.3)

called the componenis of the vector A are obtained
by projecting A on the unit vectors:

a4y nA'U(

(10.4}

While these a; are ordinary real numbers which
sutisfy all the postulates of ordinary algebra, they
cannot he conceived as an aggregate of scalars since
they have additional significance because of their
association with the frame of axes (10.1) to which
they hetong. These compoenents are comparable
to the digits of the decimal number 3425, The given
digits characterize this number only if the bhase 10 is
given to whieh they belong., The sume digits, if
associated with the base 8, belong to an entirely
different number; on the other hand, the same number
appears in the new form 6541 if the base 8 is adopted,
The number remained the same but its components
have changed in the new reference system,

Thus a vector i3 defined by & set of n real numbers
(10.3) in relation to a particular frame of axes.  An
important properly of these numbers is the rule of
transformation to find the components on changing
to some other frame of n unit vectors

0,0, . .., 0. (10.5)

These ruies are developed in the absolute calculus

,,,,, sy
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or lensor calculus, which falls into two main chapters:
the algebraic operations with tensors, tensor algebra,
and the infinitesimal operations with tensor fields,
fensor analysis.

4. Adjoint Set of Axes

In a more general reference frame the basie vectors
need not be mutually perpendicular or of length 1,
even though for practical purposes we usually prefer
such a system. Tensor ealcuius uses an arbitrary
skew-angular set of basic vectors,

ViV ...V (10.6)

not restricted in length and mutual positions, except
that they be lnearly independent, ie., the volume
included by them shall net be zera,

Operation with such a system of basic vectors is
preatly fucilitated by assoctating with it a second
set of basic veetors, called the adjornt sef.  For this
new set of veetors Uhe sane notation Vois used with
the subseripts in an upper position

Vive oA 0.7y

)

Au orthogonal set of axes is characterized by the
customnry orthogonality conditions:

U U =0 ik (10.8)

while the normalization of the length of axes to 1
adds the further condition

U? = | (10.9)

Although the general set of veetors (30.8) satisfies
neither of these two conditions, we can always define
a new set of veetors (10.7) hy the conditions

Vi'VE= ( &k (10.510)
and VirVim

To any given V, these equations are solvable and the
solution is unique, provided that the given V¢ are
lineariy independent.

The original and the adjoint set of vectors are in a
dual reiation to each other: the adjoint of the adjoint
set leads back to the original set. The conditions
(10.10) express the mutual orthogonality or bior-
thogonalily of the two vector sets Vi and V¥ and their
mutual normalization.

The special advantage of the orthogonal and nor-
malized set of unit vectors U; can now be seen in
the fact that here the adjoint set V¢ coincides with
the original set V., Henee an orthogonal and nor-
malized (orthonormal) set of unit veetors is self-adjoint,
thus avoiding the doubling of the fundamental set
of vectors,

The adjoint set V¥ ¢can be generated as a linear
superposition of the given vectors V.

v.’ - g“V; + gi’V1 + P +ginv. - Z yl'ava
o]
(10.11)

Since the Vi are given, we have the {ollowing dot
products:
Vi Vi w VoV mgn (10.12)

These gu = gei form the elements of a symmetric
matrix. The conditions (10.10) now demand:

n
gk = b (10.13})

a=i

{The Kronecker symbol 8u is defined as follows: its
value is 1 for i = &, and 0 for ¢ ¥ k) The matrix
of the g* is the reciprocal of the gu matrix. The
existence of the reciprocal matrix demands that the
determinan

g = lgul (10.1:4)

ghall not be zero. The geometrical significance of
this determinant is the square of the volume included
by the n base vectors Vi Since the Vi are lincarly
independent, according to our basic assumption,
this volume cannot vanish, and the existence (and
uniqueness) of the g% = g* is guaranteed,

The duality of the adjoint sets permits us to com-
plete (10.11) by the analopgous dual cguation

n

v, = Z Ve (10.15)
am |
with Vi e = WE Y w gk (30,16}

The symmetric matrices gie and g* are fundaumental
for the general theory of tensors and for Einstein’s
theory of general relativity.

In the apecizl case of an orthonormal set of axes
{10.8) and {(10.9) the ga are reduced 1o the elements
of the unit matrix: )

Gik ='-r,r"" = dyi {1017
and we obtain Vi = V;

5. Covariant and Contravariant Components of
a YVector

In view of the complete duality of the vectora V;
and V¥, each set can cqually be used for the apalysis
of a given vector A.  We cnn put

A=alV, +aV. 4 - - - +aV. (10.18)
n
o= Z a*Vy
a1
with at = AV (10.1h
and likewise
n
A=aVt 46V + - +aVr = Z auVa
a=1
{10.20)
with a; = A-V; (10.21)

The a' and the a; are two independent sets of com-
ponents, associated with the same vector A, but
expressing that vector in the reference system of the
V: and in the adjoint refcrence system of the V&
The af are called the contravariant, the a; the corariant
components of the same vector A. The relation
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between these two sets of components can he found
with the help of {10.11) and (10.15).

n

at = Z ga, (10.22}
a=]
n

a4y = Z Fial® {10.23)
o=

If the axes are self-adjoint (orthonormal), tho gy
assume the normal values 6., and @' and a; become
wdentieal,

i, Transformation of the Basic Vectors V;

A different set of basie veetors ¥, can bho expressed
in the reference systems of the original Vi, giving
rise to relations of the form:

]

¥ = Z gV, (10.24)

=i

while the inverse transformation takes the form:

Vi = Z v, (10.25)

o |

The matrices 3 and Bf are reciprocal to each other:

n n

z AR = Z BB = e (10.20)

o= o]

Existence of the inverse matrix % is guaranteed by
the demand that the vectors ¥; shall also be linearly
independent.

The definition of the adjoint set of vectors gives

gﬁ - 3{;: (10.27)

and the transformation of the adjoint vectors is
given by the following equations, dual to {10,24)
and {10.25):
M
¥ ) Ave
o]
n
Vi = Z BiFa (10.28)

o]
7. Transformation of Veetor Components

The vector A can be analyzed in the new set of
axes, obtaining
n

G = AT = E firde

awm ]
n

A z Bia= (10.29)

]
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The covariant romponents follow the transformation
law of the Vi (are covariant with the V), while the
eontravariant components follow the transformation
law of the V¥ {are contravariant to the V).

8. Radius Vector R

The pesition of an ordinary point P in space can
be characterized by a sct of contravariant coordinates

rhr? oo (10.30)

delined as the contravariant components of the radius
vector R:

R=0sV, +0Wad - o - oV, = Z roVy

{1038

The sunwe point 2 can likewise be charactorized in
terms of the covariant coordinates

RATE ST (Lo

defined by the covariant compenents of the radius
veetor R
n

4 rVr = Z raVa

aw-

R = I|V| +.rgV’+

(10.33)

The square of the mdiug veetor R has an important
geometricel  gignificance. 1t exprosses  the square
of the distanee of the point P from the origin in
terins of the coordinates of P Making use of the
definition of the gi and % acecording to (10.12) and
{10.16):

n n n
R? = Z z girrirh = E goz'zt  (10.34)
im] bwt Nk
Similarly
2]
Rt = Z e (10.35)
e

An expression of the form (10.34) is called a guad-
ratie form of the variables z'. The particular quad-
ratie form which defines the square of the distance
of the point z* from the origin is called the fundamental

- metrical form.

The relation between the z; snd the r* is estab-
lished on the hasis of (10.22) and (10.23):

7

o= Z e (10.36)
am= |
n

T - Z Fiaz® (10.37)
am= |

9. Abstract Definition of a Vector

A more absiract definition of a vector may be
given which brings the central principle of tensor
calculua, the principle of invariance, into sharp focus:

RS P
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We start with the variables !z .. . 2% which
characterize the position of an arbitrary point P
in space, and assume that the square of the distance s
of that point from the origin of the reference system
is given by the quadratic form

n
52 = z gariz (10.38)

k=1
We then introduce the covariant z: by the definition

T

T = E Jia T

a=1
n

st = E Lel®

a=i

{10.39}

Henee (10.40)

We now consider the Unear form of the variables o’

"

A =g b b ann = 2 tare (10.41)

o=

arl define the ceefficients ay, . . . of this linear
form s the covariant compenents of a vector A
The same for A4 ean also be written in terms of the zi:

1

+ arz. = z atre (10.42)

wen |

x".=alIl+"'

1Y
with b = Z g%y

a]

{10.43)

thus defining the conéraverion! components of the
same vector A.

If the vector A is regarded as constant force, then
the physical significance of the sealar A is the work
done by the force during the displacement OF =
In the abstract definition of a veetor the justification
of cailing A a vector is taken from the fact that the
work of the force A for arbitrary positions of the
radius vector R appears as & linear form of the coor-
dinates zi. The coefficients of this form define the
covariant componenis of the force A.

A mere set of pumbers ai, . . . 0. does not estab-
lish & vector since these coefficients have significance
only in connection with a given set of coordinate
axes. The abstract definition of a veetor takes this
property of the vector components into account since
the linear form A is cstablished solely in connection
with the variables z%x%, ... ,z~ In particulsr
we consider first purely reclilinear systems, ie.,
eoordinate systems whose parameter lines are paraliel
gtraight lines. This means in terms of the ¥ that
we consider arbitrary linear transformations of the
variables 21

B o Z Biza (10.44)

MATHEMATICS

with non-vanishing determinant B84, The inverse
transformation is then given by

i
ot = Z phen

a=1

(10.45)

where the matrix 8} is the reciprocal of the matrix B
The transfonnation of the covariant x; is estab-
lished by the principle that the bilinear form

n

st = z TaX® (10,46}
=
shall be an invariant of the tennsformation:
17 n
Z Yol = E oI (10.47)

a= 1 a=|

This prineiple esiablishes the transformation of the
z¢ as the reciproeal of the transformation of the xv

n

£ = z #irae (10.48)
am
n
n

Ti = Z Bos, (10.49)
o=

Teansformation of veelor vomponents is established
by the principle that the linear form A shall be an
invariant of the transformation:

H |
Z Gaz? = 2 daZe (10.50)
aml a1

The individual coefficients a4y change their values
if the frame of nxes is changed. The value of the
entive linear form A, however, must not be influenced
by the transformation, no matter what the position of
the point P is. This principle establishes the trans-
formation taw of the a; in the form

Gi = z Bia

o= ]

{10.51)

The transformation of the contravariant af is simi-
tarly established by the invarinnce of the linear form
{10.41):

n
ol = Z Bia

The dunlity of the components a; and af and their
transformation laws without any reference lo unil
vectors have been developed by using the following
tools: (1) The definition of a veetor on the bhasis
of an invariant tinear form. {(2) The existence ol
a distance square defined by an invariant form of
second order.,

(10.52)
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1¢. Invariants and Covariants

In theory of relativity the distinction between
quantities which change with the reference system
{eovariants) and quantities which do not change with
the reference svstem (fmearignis) 18 of paramount
importance. The cocefficients of o linear form are
covariants since they depend on the reference system
emploved. The entire linear form, however, is an
imearian! of the transformation which does net change
its value in any reetilinear reference system and thus
has absolute signifiecance. In  the prerelativistic
phase of physies certain quantities which belong
to the reahn of covariants were treated as invariants,
and vice versa.  In particular, the time ¢ was con-
sidered as an absolute, unchangeable variable which
does not participate in any transformations, while
in faet nature forms a four-dimensional manifold of
space gind 1ime,  This relegates the time ¢ inlo the
reaim of a fourth coordinate which is transformed
together with the three space variabies z,5,2.  The
orthogenal Iransformations of 3-space, eharacterized
by the invarianee of the quadetic form 22 4 3 + 27,
were enlarged 1o the orthogenal transformations of
g=spuce, characterized by the invarianee of the quad-
ratic form

22 b gt 2t oM o= E b g R B - N (10.53)

where ¢ is the veloeity of light which plays the role
of a seale Tactor of the fourth dimension and becomes
thus one of the Dlasie constants of nature. The
phyvsical significance of the invariance prineipie (10.53)
is that Hght travels in eny nonacceelernted reference
svstem with the same veloeity ¢, in every direetion,
irrespective of the motion of the ohserver,

[n gencral relativity the expression (10.53), which
introduces a Fuctidean geometry into the four-dimen-
sional space-time world, is recognized as n macro-
scopic approximation 1c reality since the actual
metric of the universe is of the Riemannian type and
hos to be developed on the basis of general tensor
caleulus.

11. Abstract Definition of a Tensor

Invarinnt algebraic forms of first order are only a
special exnmpie of the much wider class of invarinnt
algebraic forins of any order. This gives o natural
introduction of the tensor concepi: a tensor of mth
order is defined with the help of an fnvariant algebraic
Jorm of erder m. The coefficients of this form define
the components of the tensor, covariant if the vari-
ables are the contravariant coordinates z¥, nnd
contravariant if the variables are the covariant
coordinates z;. A vector is thus s special case appear-
ing a8 a tensor of first order.

12. Tennors of Second Order

Tensors of second order occur particularly often
in the mathematicai deseription of naturai phenomena.
For example, the elastic stress tensor is a symmetric
tensor of second order, ns weil as the Maxwellian
clectric stress tensor.  in the theory of relativity the
clectromngnetic fieid strength is an antisymmetric
tensor of second order in space-time.

All these tensors represent mathematically the
coclficients of an invariant algebraic form of second
order:

A= Z oz (10.54)
af=1

This quadratic form has ealy n(n + 1}/2 independent
elements, since the terms aarir* and awarts” combine
into one. We make the tensor unique by adding
the symmetry condition

Qs = it (105:})

and speak of o symmelric lensor.

A general tensor of second order is defined hy the
following device: consider two  differeni positions
of the radius vector R, suy 2% and 3, nnd define 1the
form

gLl (10,58

i
[~

1

&®
r

I

The terms with ay and g are now independent and
the form defines a® separate elenents,

The symmetry pattern (10.55) of the cocllicients
ean be augmented by the pattern

Ao = —di (10.57)

which defines an antisymmetrie tensor of second
order having nin — 1)/2 independent components,
The six independent components of such a tensor in
tspace combine the electric and magnetic  fiekd
stremygth into one entity.

The same tensor of second order may be given in
covarinnl or contravarinnt or mixed form, seeording
to the pature of the variables employed:

Qafzo 1P

n
)
afml
®
= Z a"frayg
wf (10.58)
e a%graif

]

i
2§

adPray,

k-

=}

@,
13. Einstein Sum Convention

The homogencous notation of the variables and
the consistent use of lower and upper indices for the
distinction of covariani and contravariant components
and variables contributed greatly to the systematic
development of tensor calculus.  An additional opera-
tional simplification was introduced by Einstein.
In all previous formulas the position of the indices
is such that the summation occurs over an index
which in one factor is in the upper position and in the
other factor in the lower position. Now whenever
the same index appesrs iwice in opposite positions
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in a formuls, we shall aulomalically st over that nder.
Hence the notation
(e
shall mean
n

E dq k™

Ta |

The same convention holds if a product contains
more than one pair of equal indices, e, the doubie
suimn

H
2 oty

k=1
is now writien in the form
el

This simplification greatly facilitates the symbelie
manipulations with 1eosors.

14. Tensor Algebra

Algebruic operations with lensors are an immediate
consequence of the generad definition of a lensor
as the cocfficients of an invariant algebraie form
of the order m. ‘The generad delinition makes use
of m independent positions of the radius vector Re

Iin ykr . ’zm

Moreover, any of these sets of varisbles may be put
in covarinnt form

Liy Hky « o v 9 Do

Every set of varinbles is associated with one sub-
geript or superscript in the coefficients, corresponding
indices being always in juxtaposition, for exnmple,

A me i prtyt oo 27
A =al. .. mryt o e

Addition of Tensors, The sum of two invariznts
is again an invarant. The sum of the two forms

ait® -+ bzt = {aq + bort (10.59}

defines a new invariant form of first order. The
quantities
ci = ai + {10.60)

form the covarisnt components of a new tensor of
first order.

Generally two tensors of the same order whose
components are in homologous positions can be added;
the sum defines a new tensor of the same order, with
the same distributien of covariant and contravuriant
components:

gl - b = ek “061)

Muitiplication by a Censtant. The multipli-
cation of nll tensor components by the same constant
defines a new tensor of the same order and same
distribution of indices:

agld™ = ot (10.62}

Multiplication of Two Tensors. The product of
two invariant algebraic forms gives once more an
invariant algebraic fora.  The order of the new [orm
is the sum of the orders of the composing {actors:

(ax Y bry*) = aiberty® (10.63)
Hence ae = Cik (10.64)

defines a tensor of second order, covariant in both
indices. Generally the product of any two tensors,
with any distribution of covariant and contravariant
components, yields a tensor whose order is the sum
of the order of the composing factors and whose
indices exactly repeat the entire set of composing
indices, e.g., the product

ambi? = oi™P {10.65})

yields a tenser of fourth order, covariant in i,k
conlravariant in m,p.

Teansposition of Indices. If in the definition of
an invariant abgebraie form the positions of the
radius vector are exchanged, we once more obtuin an
invariant algebraic form of the same order. For
exampie, i

A = anxr'y* {10,643}
i an invariant,

B = any'r* = anr'yt {10.67)

is also an invariant. This shows that if au 18 o
covirinnt tensor of second order,

bix = (10.68)

is algo a covariant tensor of seeond order.  Generally
it is permissible to exchange any two indices which
are hoth in the upper or both in the lower position.

With the help of this operation we can always
decompose a covariant or a contravariant tensor of
aven order into the sum of twe tensors; the one
symmetric, the other antisymmetric in one pair of
indices. For example, the covariznt tensor of second
order ai; may be written in the form:

a = bolau + o) + Lo{am — Qi) (10.69)

The first tensor on the right side is symmetric [see
(10.55)], the second antisyminetric [see {1057
ini, k.

By the same operation two covariant vectors a;
and by give rise to & gymmetrie tensor of second order

cie = aibe + audi (10.70)
and an antisymmetrie tensor of second order
diz = abe — agby (10.71)

Raising and Lowering Indices. The general
definition of a tensor of mth order involved m inde-
pendent positions of the radius vector 2, which could
be given in cither covariant or contravarinnt form.
However, the general relations (10.36) and {10.37) be-
tween covariant and contravariant coordinates make
it possible to change any covariant index to a contra-
variant index, and vice verss. This involves a
homologous change in the pasition of the correapond-
ing index of the associated coefficient.
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The raising of a covariant index oceurs by the
process

af... = glag, ., (10.72)

while the lowering of a contravariant index occurs
v the process

a;’ " = ghaattt {10.73)

The dots indicate any combination of covarjant or
contravariant indices which do not participate in
the operation and which are carried along without
any change.

Coutraction of a Tensor. The general definition
of a tensor as an invariant algebraic form of a certain
order includes the transformation law of the com-
ponents if the variables are subjected to an arbitrary
nonsingular linear transformation,  All contravariant
variables = %, . . . follow the same transformation
matrix 85, while all covariant variahles Tidioc
follow the sume transformation matrix A% which is
the reciproeal of d; see (10.48) and (1(0.49)]. The
transformation law of the tensor components ap™ « - -
is identieal with the transformation law of the
produet,

Ioyez™ (10.74)

Now perform the following operation: Squale one
covariant and one contravariant index of a tensor
and perform the summution over this index. We
might choose, for example, the indices & and m in
the example (10.74) and form the quantities

Aig® + + = (10.75)

which follow the transformation law of the product

zi(yaz) - - - {10.76)

The bilinear form
Yat® o

i3 an invariant of a linear transformation. Hence
the factor in parentheses in (10.76) hehaves like a
constant during the transformation, and therefore
the transformation of the quantities (10.75) follows
the transformation law of the product (10.73) omitting
the indices ¥ and m. This is equivalent to the
statement that the quantities (10.75) form the com-
ponents of a tensor which has the same indices as
the original tenser but omitting the two indices &
and m. Thus the operation

b - - o= e e - (10.78)

called contraction, gencrates a new tensor whose order
is lowered by 2 compared with the original tensor.

In the case of a tensor of second arder, contraction
results in & tensor of zeroth order, giving & sealar or
invariant:

a = g, {10.79)

H in particular the tensor a%y is defined as the product
of the two vectors b and i, we obinin the invariant

a = be (10.80)

This invariant is the scalar or dot product B+ C of
the two vectors B and C.

15. Determinant Tensor

Consider n independent positions of the radius
vector R and form the product of the following two
determinants, composing rows by rows:

' ot ... L A L R T
ytoyt o y" ¥ o ¥roc v Yw

{10.81)
L R L T I TP,

The product is & determinant whose elements are in-
variznts, hence it s an invariant, Morcover:

!xl Ty v - In
’:1 22 In
! xt PR T ! g diz e . T1n
]
. |
Sy (10.82)
A T R

Substitusing (10.82) in (14.81) and taking the square
root, we obtain

xl. II I "
\/;; . = invariant  {[0.83)
zL oz ... gn
Similarty
Iy T Tn
1
— . = invariant (10.84)
V|-
2y Zy v Za

From the theory, a determinant of the form (10.83)
or (10.84) may be written as an algebraic form of ath
order:

xbooxt e gm

= g D'y o - - zm (10.85)
z! zl P F4d

where ... vanishes for any combinstion of in-
dices which are not all different from each other,
while the nonvanishing e«i.... are defined as +1
if ik - - - m represents an even permutation of the
numbers 1,2, . . . n,and —1ifik - - - m represents
an odd permuiation of the numbers 1,2, . . | .

Henee in any n-dimensional manifold there exists
a tensor of nth order, antisymmetric in any pair of
indices which has the covariant components

Gikrrom = O ko (10786)

or the contravariant components

) 1
B o

g

cem (10.87)
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This tensor is called the determinant lensor or per
wutalion {ensor.

16. Dual Tensor

Aultiply a given tensor af mth order, covariant
in all its indices, by the contravariant tensor (10.87Y,
contracting over all the indices ol the given tensor.
The result is a completely contravariant tensor of
order n — w, antisynunetric in any pair of indices:

@R = g b8 T (10.88)
where a* is called the dual of the tensor a. A similar
construction applies (o the completely covariant ten-
sor if the originai tonsor s completely contravarimt,

OF parficular interest is the application of this
operation to  3-space and 1o despace. o 3espaee
the anlisymmelne (ensor

{10.84)

o= M — )

is associnted with the vertars A and B, The duad of
s tenser becomes a tensor of the order 3 = 2 =1,
(hat is, & veetor. The conravariant components of

this veelor are

* o= -!— (s — ttaha)

Vi
e*t = - - ((“h] . (?|Ih) (1()‘)()3
Vi
ot = = Carghy =~ dshy
i

which is the customary cross praduct A X Bof veetor
alpebrs,  This method of associnling o third vector
(o Lwo given vectors is restricted o 3-space huenuse
the crogs product of two vectors is basically an anti-
syminetric {ensor of second order associated with two
voetors according to (10.89).  In 3-space the dual of
this tensor is a vector, EIVINE rise 10 the veeior
componenis {10.90).

In d-space the dual of an antisymmelric tensor of
second order s ngain an antisymmetric tensor of
second order.  This relation is fundamenial for the
selativistic interpretation of the duality of the Max-
well cleetromagnetic equations (see See. 24

17. Tensor Fields

The linear algebraie form {1041) could he inter-
preted as the work of the force A during (he displace-
ment R = OF. This required that A Dbe n constant
force. I n field of force is given which vhanges its
magnitude and direction continuously from point to
point, we have fo think of the infinitesimal displace-
ment ¢ which remains in the neighborhood of the
point P, the displacement being 1aken hetween the
points P = i and P =12+ dri. The work of the
foree A is then given by the differential form

A = agdr® (10.91)

The coefficients of this differential form are no longer
constants hut continuous functions of the coordinates
x4, 2%, L. 3

MATHEMATICS

By changing from algebraic forms to differential
forms it is possible to extend the renim of teasor
operations from constant tensors to tensor fields.
Tverything remains valid ns before with the under-
gtanding that all operations of tensor algebra are
now performed af o definite point z* of the field.
The differentials dri can be interpreted as local
coordinates of the point £, measured from the een-
ter 2. The infinitesimal displacement from P to P!
climinates the variable character of the field, since
for such displacements the tensor ficld assumes the
behavior of 4 constant tensor.

Tor present discussions the ficld concept will not
bhe extended (o the coordinates & themselves. These
will stibl be assumed 1o he rectilinear eoordinales which
exiond to the entive space.  Henee the transforma-
tion from the £ 1o the £ s still a linear transforma-
Lion. and the transformation matrix of the differen-
tinis et s the same as the transformation matrix
of the conrdinates rf themselves.

The transition from aigebraic Lo differential forms
dees not modify any af fhe previous resuits. The only
difference s that components ol vectors and tensors
are now funetions of the point /2,

The field concept does naf oxtend, however, 10 the
metrienl tensor gu. Sinee the eoordinates are reeti-
linear, the expression (10.34) for the finite distance
& ow 0F % still valid, The differential form of this
equition:

(eHI0Y = dda? = g da’ dak {10.92)
defines the square of the line olement ds. This
line element ds is associnted with the two neighboring
points £7 o= etand POt b drt aned defines the in-
finitesimal distsnee betwoeen these. Lwo points.  The
i voviivients of - this quadsatic differentinl form
are constants throughout the field,

18. Differentintion of a Tensor

The abstract definition of o tensor of mth order
involves m independent positions dy, dzt + - - du*
of the infinitesimal radius vector dR. The definition
oecurs with the help of the invariant differential
forn

- - dur {10.93}

A = ... pdytdek -

where 1he cocfficients @i .., are functions of the
coordinates ), r3, ..., 2

Sinee the differential of an invariant is again an
invariant, we can form the infinitesimal change of A
between two aeighboring points P and P’ of the field.
This gives the new invariant

dA M g L durdre (10.94)

are

which is n differential form of the order m + 1.
Hence by definition we have obtained a new tensor

of the order m + 1t ;
Bitenopy = HECE (10.95)
ke pe pon .
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from that tensor, we do not use a new letter for its

designation byt adopt  the following method of
notation:

. Ga.-*..‘,,
= P
dxe

a.‘l“--p.q

(10.98)

The same procedure holds if some or all the indiges
of the given tensgr Are contravarisnt. The differen-
tiation of 5 tensor js the only typical operation of
tensor ana)ygis. Al operationg of tensor annlysig
are n combination gf the differentiation of a tensor

discussed in this paragraph, and the previous alge-
braic operations, diseugsed in Sec. 14,

19. Covariang Derivative of the Metrieal Tensor
The metrical tensor gir forms g sYmmetrie tensor

of second order.  Since in 1 reetilinear referenee

system the gy are ronstants, thoe covariant derivatjve

of the tensor gy, vanishes ny every point of the n-dimaon.

sional manifold-

i

drm

Fitom = = (10,97}

20, Principles of Special ang General Relativity

Einstein formulated (he prineiple of special pela.
tivity which required that aj) referenea syslems in
uniform motjon relutive (o anel other shall o cquiva-
lent for the formulation of the laws of nature, Thig
requires that, (he equitions of muathematies] physics
shall have invariance wigl respect Lo ap arbitrary
linenr trinsformation of the four varialles Ty,

In 1918 Vinstein formulated the prineiple of gen-
cral relativity (hased on the cquividence of heavy
mass and inerting pyagy) which roquired that, arhitrapy
reference svstems in arbitrary motion relative 1o onch
other shall he equivalent for he formulation of the
laws of nature, This requires that the equationy of
mathematjey) physics shall have invariance with re-
speet to arbitrary curvilinear transformations of the
four variableg Z,1,2,L.

The tools of tensor caleulus were in harmony with
the principle of general relativity, These tools are
in intimate relation to the concepts of Riemannian
Ecometry and brought the importance of the geometry
into sharp foeus, Einstein applied the mathematieal
investigntiong of Riemann to the physicaj univerge
and discovered the theory of genera] relativity which
explained mass, energy, and gravity in purely geo-

metrical terms and gave theoretical physics a funda-
mentally new {upn,

21. Cu rvilinear Trang formations

In place of rectilinear coordinates z' 0 more general
class of curvilinear coordinates £ wijj now be uged
characterized by an arhitrary point transformation

2= filziat | e (10.08)

where the j’"(r*, v - 4%") are given ng arbitrary con.
tinuous and twice differentiable functions of the
old variabies 2, with nonvanishing Jacobigp The
inverse of the transformation (10.98) takes the form

=6 fiErger A% (10.99)
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The relation between the differentials of the variabies
remains linegr-

agi = (10.100)

This suffices for tensor analysig since Invariance
broperties may be established from differentin] forms.
The new feature associated with the use of Curvi.

linear coordinates is the fact that the matrix of the
transformation

Bl = g (10.101)

now changes from point to point and hence jg g field
quantity, The Eeometrical significance  of this
change is that the local reference s¥stems, char.
acterized by the 4z%, nre no longer in parallel orientg.
tion to ench other, This, however, js irrevelant for
the operations of tensor algebra which are restrictod
to one definite point of the manifold. The only
aperation which becomes essentinlly modified by
the introduction of curvilinear toordinates jy ¢l
differentintion of A tensor, since thig operation involveg
relations hetween fiold qQuantitics gy neighboring
points of the manifold,

22, Covariant Derivative of & Tensor

Consider an arbitrary position dy' of the infini-
tesimal radiyg veetor dR, The corresponding  djf.
ferentinlg d§' in the curvilinenr gysiem become

d7* = F dya (10.102)

Cunsidcering the dya gg constants, the 45 are not

CORSLANLS since the faptop B changes from point to
point.  This gives:

L2y - é.é:.;’. - ggz—' »
dij ai.dy‘dt’ '8:6:5" dp di
- =3 % i age (10.103)
ofr
But
My oya
Pl (10.104)

and hence, intreducing the auxiliary quantitieg

m - . ey
i B"EE‘& ﬁ“’,é?-'?:e—n {10.105)

we notice that thege quantities (which gg not form p
tensor of third order, in spite of the analogous notg-

tion) are Symmetrie in §k:
Iy =1t (10.106)

With the help of these quantities the relation (10.103)
becomes

Ay i dije d#f (10.107)

The corresponding transformation |aw of the covar.
1ant differentialy

dfs = 8% dy, (10.108)
Gy - Ty dfa det (10.109)

yields
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We now consider the invariant differential form

A = o df® {10.110)
written down in an arhitrary curvilinear system.
From the differential of this invariant, we derive
the covariant derivative of the veetor ai.  Now we
wave to differentiate the socond [actor too, replacing
drgt by (10.107). Thus the covariant derivative
of the vector a; in an arbitrary curvilinear system is

oa;

g = — —TGa (10.111)
Dk
Similarly the invariant form a® 4y yields:
. an’ i
aly = = -+ Do (10.112)

ark

Generally, applyving the same pringiple to o dif-
ferential form of arbitrary order, we obtain the result
that every index of the fensor pres rise to @ correction
ferm. 1T the index is covananl, the correction term
follows the pattern of g, (1001110, if contravariant,
the pattern of Eq. (10.112), The romaining indices
are carried along unchanged, ¢.&.

1 .
aiim = %‘iﬁ AT g% — Piadia  (10.113)

23. Covariant Derivative of the Metrieal Tensor

I curvilinear coordinates are introduced, the g
become  field  quantities. The transformation of
g, (10.92) 10 curvilinear coordinates gives

afe af
Gn = puoiSh = y..;;%; (10.114)

which reveals the field charncter of the new .
Nevertheless, the covariant derivative of gis must
vanish since & tensor which is zero in any rectilinear
reference system Femains zero in every reference
system. This gives the important relation

ax™

{10.115)

— 1%gak — Timgia = 0

We introduce the so-cadled Christoffel symbols of
the first kind:
Cimfak = {'-ﬂ

(10.116}

and rewrite (10.115) with these symbols. We also
know the symmetry of the Christoffel symbols in the
two upper indices, in view of (10.106). We thus
deduce by a simple nlgebraic manipulation:

. 1 (ag.-.. fim agu)
I I s 10.117
[ 2\ ozt + xt dxm ¢ )

and obtain the important result that the auziliary
quantilies T, originally defined in terms of the
transformation equations to curvilinear coordinates
(cf. (10.105)), are expressible in lerms of the melric
assoctated with that curvilinear system.

We can thus completely sbandon the transforma-
" lion equations which originaily gave rise to 8 curvi-

linear system. If we possess the metrical tensor
. associated with that reference system, we can
immediately form the quantities

& = e
and thus obtain ail the tools for the formation of
covariant derivatives. The entire edifice of absolute
caleutus for arbitrary curvilinear eoordinates can
thus be erected on the basis of the invariance of
differential forms, plus the existence of the metrical
tensor gik.

(10.118)

24. Fundamental Differential Invariants and
Covariants of Mathematical Physics

Apart from the fundamental importance of genernl
relativity, the study of absolute calculus has also
a purcly practical value, The differential equations
of mathematical physies have to be solved frequently
under houndary conditions  which demand  the
introduction of the proper kind of curvijincar coor-
dinates, such ag’ gpherical, eylindrical, parnbolic,
or other coordinates. The Lools of absolute caleulus
put us in the position to write down the basic differ-
entiat equations of physics in any reference system,

The differential operators of absolute calcuius
are complicated by the appearance of I'-quantitics.
However, in many of the fundamental differentinl
operators of mathematical physics these quantities
enter in o highly simplified manner. We list helow
the most important differential invariants and
covariants of mathematieal physics. In deducing
these expressions, the following relation is of great
usefuiness:

1 0gur 1 3¢
pa o 10, o L3O
o 26:&:‘9” 2¢ ax*
L1 2V (10.119)
g 9%

where g ia defined by (10.14).
Divergence of a Vector. The following scalsr
can be associated with 8 vector field, called the

divergence of the vector At
] \/& a2

1 d4x=

a%,, = diva = (10.120)

Laplacian Operator 44! Let the veector ai of
{10.120) be the gradient of the acalar function ¢!
ik

ay =
Fik Al

(10.321)

The divergence of this vector gives the invariant
Laplacian operator

2 /a9 98/95%)  (10.199)
/g oz

Divergence of a Symmetric Tensor i, Let
Tk = Tk be n symmetric tensor of second order.  We
form the following vector, called the divergence of
the tensor Tt

A¢ = div grad ¢ =

e
IV T 1% e (10.123)

T, =
o\/& Fit ol 2 ax*

This different:
portance since
energy appear
the divergenec

vanishes.
Divergence
Let Fik w —

order (e.g., ele

25, Maxwell )

The Maxwe
field, consider
equations. T
gence of the el
is equal to the

The seeond o
the dual tense

Considering
wu oblain

™
Fhe remarkal
does not con
it 1 solvable |

}vhich i like
18 called the
conservation
gsequence that

26. Curvatur

We conside
veetor a, and
and once in
performed in
that the resul
would expect
two tensors .
result comes «

where Ry =

Since the lef*
order, covaric
tensor of fou
variant in 1




deal

tensor

Jn, we can

(10.118)
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This differentinl covariant is of fundamental im-
portance since the conservation iaw of momentum and
energy appears in field physics in the form that

the divergence of the symmetric matter tensor T
vanishes,

Divergence of an Antisymmetric Tensor Fi,
Let P = - ki he an antisymmetrie tensor of seeond
order (e.g., electromagnetic field strength).  Then

F'l"'.q = m

\/.r; ars

25. Maxwell Electromagnetic Equations

(10.124)

The Maxwellian equations of the clectromagnetic
ficld, considered relativistically, split inte two vector
egatations,  The first equetion states that the diver-
geace of the clectromagnetie field strength Fik = e
is equal o the current density vector:

[ '\/E’ e
\/& x>

The second equation states that the divergence of
the dual tensor vanishes:

- & (10.125)

3 'VI& Fria
g

= {) {10.120)

Considering the definition (10.88) of the dual tensor,
we oidain
oF
bl i = O
dre
The remackable feature of this equation is that it
dous not contain any metrieal quantity explicitly.
it i3 solvable by putting

F. dpi  ddn
[P AR Ao

; (10.127)
dek  ort

which is likewise free of metrical quantities. ¢
is cnlied the vector potential. 1t i3 subject to the
congervation Inw of eleetricity which has the con-
sequence that the divergence of ¢ vanishes:

0 8
I Vg by _ 0 (10,128)
axrd

26. Curvature Tensor of Riemann

We consider the second covariant derivative of a
vector a, and differentiate once in the sequence 7k
and once in the sequence kf, If this operntion is
performed in a rectilinear reference system, we find
that the result ig in both cases the same. Hence we
wouid expect that slso in a curvilinear system the
two tensors ai,; and oi4; will agree. In fact the
result comes out as follows:

Gigk — Qiky * ~R% 40 (10.129)
ary; T
where Ro;j = i E“ + %1%, - T4, (10.130)

Since the left side of {10.129) is a tensor of third
order, covariant in 7,4,k the factor of us must be a
tensor of fourth order, contravariant in a and co-
variant in 1,j,k. It is completely composed of the

I-quantities and thus is of a completely metrical
character.

The apparent paradox that the tensor {10.129)
vamshes in a rectilinear system but does not vanish
in & curvilinear system is caused by the fact that the
assumption of a universaily rectilinear reference
system strongly prejudices the metrical character
of a manifold. The metrical tensor of a manifold
may have the form (10.114), in which case iuis derived
from an originally consiont gu. In this case we have
a metrical geometry which satisfies thie postulates of
FEuclidean geometry. But it is also possibie that the
g of a eurvilinear reference system are preseribed
ag some field quantities, without demanding that thev
shall be of specific form (10.114).  Ricmann in 1854
established the far-reaching idea of a metrieal mani-
fold which is characterized by n quadratic differentin)
form wilhout any further restrictions exeopt for the
natural conditions of eontinuity and differentinbility,
A geometry of this kind, callod Riemannian yeometry,
is Buclidean only in infinitesimal portions of space
hut not in finite portions, The Buclidean tvpe of
geometry is a specially simple exampte of Riemannian
geometry in which the tensor (10,1300, ealled the
Riemann-Christoffel curvature fensor or bricfly the
Riemann lensor, vanishes identically. The second
covariant derivative of a tensor is then independent
of the sequence of differentintions, which is not true
in the more general metrical pattern of Riemannian
geometry,

27. Propecties of Riemann Tensor

The curvature tensor fyx- is charncterized by the
following algehrate symmetry propoertics.
It iy antisyminetric in the irst pair of indices:
IEjM-. - '—[i).','i-m (10.13])
It is antisymmetric in the sccond pair of indices:
(10.132)

It is symmetric with respect to an exchange of the
first and second pair of indices:

Rir’nh - _Rijhn

Rimis = Rijim (10.133}
It sntislies the cyclic identity
Riikm + Rikmi + Rimjx = 0 {10.134)

These symmetry properties reduce the number of alge-
braically independent components to n*{n? — /12,
Hence the number of independent components is | in
2-space, 6 in 3-space, and 20 in 4-space.

Differential properties of the curvature tensor.
Rijon sntisfies the following differential identity,
culled the Bianchi identily:

Risimyn 4 Rijmne + Rijntym = 0 (10.135)
28. Contracted Curvature Tensor

Einstein thought that the metrical tensor g
should be considered as a field quantity and subjected
to field equations, These field equations must take
the f.{)rm of some partial differential equations which
have invariant significance in ail curvilinear reference
systems. The curvature tensor of Riemann did
not seem suitable for this purpose since it is o tensor
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of fourth order, with n2(n? — 1)/12 algebraically
independent componenis, while the metrical tenser
is only a symmetric tensor of second order, with
nfn 4+ 13/2 independent components, Any state-
ment in terms of the full Riemann tensor would thus
be strongly overdetermined.

A contraction changes a tensor of fourth order to
& tensor of second order. The contraction over the
frst two indices of the Riemann tensor gives zero,
on sccount of the antisvrametnie nature of these two
indices. However, a contraction over the first and
third {or second and fourth) indices generates 2
new tensor of second order, calied the Einslein len-
sor, which is symmetric in 7 and k. We denote this
tensor again by the letter R since the possession of
only two indices distinguishes this tensor R suf-
ficientiy from the full Ricmann tensor Rijum:

atlog \g  aVg s
{..\j_f'\{j k+I‘?BI‘Eu

R = Ria =
ik kat pynarye ‘\/g pyon

(10.13G}

A sccond contraction generafes an invariant, called
the scalar Riemannian curvalure or the Gaussian cur-
vature.  We denote it by the letter I, without any
indices:

- -
atlog A0 9o T2

JxE 4x* \/; az*

R = o = | Kt | o

(10.137)

In two dimensions, where the Iiemann tensor has
only one independent eomponent, the sealar Guussian
curvidure J2 ig sufficient for the cbaracterization
of n Riemannian manifold,

In three dimensions, where the Riemann tensor has
siz independent components, the contracted curvature
tensor R is sufficient for a full characterization
of a Iliemannian manifold.

In four dimensions. where the Riemann tensor has
20 independent components, the contracted tensor Rix
with its 10 components does not give a full charac-
terization of a Riemannian manifold. Here the
vanishing of R does nol necessitate (as in two and
tiree dimensions) the flattening out of space due to the
vanishing of the full Riemann tensor.

29. The Matter Tensor of Einstein

If in the Bisnchi identity (10.135) we raise the
first two indices and then contract over 7,k and also
over j,m, we obtain a remarkable result which can
be written as follows:

Tim o =0 {10.138)
where the symmetric tensor T is defined by
T = R — Y6 Rgix (10.139)

The identity (10.138) says that the divergence of the
symmetric tensor Ty i3 zero. But this i3 exactly
the form in which the conservation law of momentum
and energy appears if matter is considered ng o field
quantity which is continuously distributed over
space-time, [Kinstein cquated the temsor T with
the matter tensor of theoretical physics and thus
obtained a purely geometrical interpretation of mass,
energy and momentum. Mass density or energy

_ corroborated by astronomical observationa.

density can thus he conceived in terms of the curva-
ture of a four-dimensional Riemannian manifold.
The Riemannian ecurvature is particularly high ag
such portions of space-time where there is matter
while i empty space the tensor Ty, vanishes.

30. Einstein’s Theory of Gravity

Matter is concentrated in the stars and planets,
with interplanctary spaces {ree of matter, The
statement that the matter tensor vanishes yields the
field equation

Rie =0 {10.140)

for determination of the gu.  While in two or three
dimensions ¥q. (1004107 would reduce the ga to
constants, in four dimensions this is no longer the
case.  The fickd cquations (HL140) represent a grand
generalization of the Laplacian equation

Ag = () (16,14

which charaeterizes the Newtonian potential.  Solu-
tion of the fietd equations (10.140) under spherically
symmetric conditions gave the Riemannien metric
of space-time generated by the sun. The motion of
the pianets aceording te the law of ineetin—that means
ajong shortest lines in this Riemannian manifold—
gave a complete deseription of gravitational phe-
nomena, including  the  fundamental identity  of
gravitational and inertia} mass, without further hy-
potheses.  Morcover, the theory predicted a number
of minute cfeets which were not included in the
previous theories: in particular, the red shift of the
spectral lines in strong gravitational fields, the deflecs
tion of light at the fimb of the sun, and a slight seeular
precession of the planetary cllipses, an effeet which
in the ense of Mereury assumes measurabie propor-
tions. All these predictions of the theory have been
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