Problem Assignment $\# 6$ 11/06/2024 due 11/13/2024

I.5.1. Lorentz transformations in M_2

Consider the 2-dimensional Minkowski space M_2 with metric $g_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -1$) and 2×2 matrix representations of the pseudo-orthogonal group $O(1, 1)$ that leaves g invariant.

a) Let $\sigma, \tau = \pm 1$, and $\phi \in \mathbb{R}$. Show that any element of $O(1, 1)$ can be written in the form

$$
D_{\sigma,\tau}(\phi) = \begin{pmatrix} 1 & 0 \\ 0 & \tau \end{pmatrix} \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix} \begin{pmatrix} \sigma & 0 \\ 0 & 1 \end{pmatrix}
$$

To study $O(1,1)$ it thus suffices to study the matrices $D(\phi) := D_{+1,+1} = \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$ $\sinh \phi \quad \cosh \phi$.

- b) Show explicitly that the set $\{D(\phi)\}\$ forms a group under matrix multiplication (which is a subgroup of $O(1, 1)$ that is sometimes denoted by $SO^+(1, 1)$, and that the mapping $\phi \to D(\phi)$ defines an isomorphism between this group and the group of real numbers under addition.
- c) Show that there exists a matrix J (called the *generator* of the subgroup) such that every $D(\phi)$ can be written in the form

$$
D(\phi) = e^{J\phi}
$$

and determine J explicitly.

I.5.3. Special Lorentz transformations in M_4

Consider the Minkowski space M4.

- a) Show that the following transformations are Lorentz transformations:
	- i) $D^{\mu}_{\ \nu} = \begin{pmatrix} 1 & 0 \\ 0 & B^i \end{pmatrix}$ $0 \quad R^i_{\;\,j}$ $\Big) \equiv R^{\mu}_{\ \nu} \quad \text{(rotations)}$ where R^i_{j} is any Euclidian orthogonal transformation. ii) $D^{\mu}_{\ \nu} =$ $\sqrt{ }$ \vert $\cosh \alpha$ sinh α 0 0 $\sinh \alpha$ cosh α 0 0 0 0 1 0 0 0 0 1 \setminus $\equiv B^{\mu}_{\ \nu}$ (Lorentz boost along the *x*-direction) with $\alpha \in \mathbb{R}$. iii) $D^{\mu}_{\ \nu} =$ $\sqrt{ }$ $\overline{}$ 1 0 0 0 $0 -1 0 0$ $0 \t 0 \t -1 \t 0$ 0 0 0 −1 \setminus $\equiv P^{\mu}_{\ \nu} \quad \text{(parity)}$ iv) $D^{\mu}_{\ \nu} =$ $\sqrt{ }$ $\overline{}$ −1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 \setminus $\equiv T^{\mu}_{\ \nu}$ (time reversal)

(6 points)

- b) Let L be the group of all Lorentz transformations. Show that the rotations defined in part a) i) are a subgroup of L , and so are the Lorentz boosts defined in part a) ii).
- c) Let $I^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu}$ be the identity transformation. Show that the sets $\{I, P\}$, $\{I, T\}$, and $\{I, P, T, PT\}$ are subgroups of L.

(4 points)

I.6.1. Transformations of tensor fields

- a) Consider a covariant rank-n tensor field $t_{i_1...i_n}(x)$ and find its transformation law under normal coordinate transformations that is analogous to §5.1 def.1; i.e., find how $\tilde{t}_{i_1...i_n}(\tilde{x})$ is related to $t_{i_1...i_n}(x)$.
- b) Convince yourself that your result is consistent with the transformation properties of (i) a covector x_i (the case $n = 1$), and (ii) the covariant components of the metric tensor g_{ij} .

(4 points)

I.6.2. Curl and divergence

Show that the curl and the divergence of a vector field transform as a pseudovector field and a scalar field, respectively.

(3 points)