Problem Assignment # 7 11/13/2024due 11/20/2024

II.2.1. Lindhard function

Consider the function $f : \mathbb{C} \to \mathbb{C}$ (which plays an important role in the theory of many-electron systems) defined by

$$f(z) = \log\left(\frac{z-1}{z+1}\right)$$

The spectrum $f'': \mathbb{R} \to \mathbb{R}$ and the reactive part $f': \mathbb{R} \to \mathbb{R}$ of f are defined by

$$f''(\omega) := \frac{1}{2i} \left[f(\omega + i0) - f(\omega - i0) \right] , \qquad f'(\omega) := \frac{1}{2} \left[f(\omega + i0) + f(\omega - i0) \right]$$

where $f(\omega \pm i0) := \lim_{\epsilon \to 0} f(\omega \pm i\epsilon)$.

a) Show that f' and f'' are indeed real-valued functions.

b) Determine f'' and f' explicitly, and plot them for $-3 < \omega < 3$.

c) Show that

$$\int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{f''(\omega)}{\omega - z} = f(z)$$
(5 points)

II.2.2. Another causal function

The function considered in Problem 2.2.1 is an example of a class of complex functions called *causal functions* that are important in the theory of many-particle systems. Another member of this class is

$$g(z) = \sqrt{z^2 - 1} - z$$

Determine the spectrum and the reactive part of g(z), and plot them for $-3 < \omega < 3$.

(3 points)

II.2.3. Proof of the Cauchy-Riemann Theorem

Prove the Cauchy-Riemann theorem from ch.2 §2.2:

a) Let f(z) = f'(z', z'') + if''(z', z'') be analytic everywhere in $\Omega \subseteq \mathbb{C}$. Show that the Cauchy-Riemann equations

$$\frac{\partial f'}{\partial z'} = \frac{\partial f''}{\partial z''}$$
 and $\frac{\partial f'}{\partial z''} = -\frac{\partial f''}{\partial z'}$

hold $\forall z \in \Omega$.

hint: Start with the difference quotient $(f(z) - f(z_0))/(z - z_0)$ and require that it's limit for $z \to z_0$ exists if z_0 is approached on paths either parallel to the real axis, or parallel to the imaginary axis.

b) Let the Cauchy-Riemann equations hold in a point $z_0 \in \Omega$. Show that this implies that f is analytic in the point z_0 .

hint: Consider $f(z) - f(z_0)$ and expand f'(z', z'') and f''(z', z'') in Taylor series about z_0 .

(8 points)

II.2.4. Exponentials

Consider the exponential function

$$f(z) = e^z = e^{z' + iz''}$$

- a) Show that f(z) is analytic everywhere in \mathbb{C} .
- b) Convince yourself explicitly that the real and imaginary parts of f obey Laplace's differential equation.
- c) Show that $df/dz|_z = f(z)$.
- d) Show that $\cos z$ and $\sin z$, defined by

$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right) \quad , \quad \sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

are analytic everywhere in \mathbb{C} , and that

$$\frac{d}{dz}\cos z = -\sin z$$
 , $\frac{d}{dz}\sin z = \cos z$.

(4 points)