(3 points)

Problem Assignment $\# 8$ 11/20/2024 due 11/27/2024

II.3.1. Laurent series

Find the Laurent series for the function

$$
f(z) = 1/(z^2 + 1)
$$

in the point $z = i$. That is, find the coefficients f_n that enter Theorem 2 in ch. 2 §3.2.

II.3.2. Applications of the residue theorem

Use complex analysis to evaluate the real integrals

a)

$$
\int_{-\infty}^{\infty} dx \; \frac{1}{x^4 + 1}
$$

b)

$$
\int_{-\infty}^{\infty} dx \frac{\sin x}{x}
$$

hint: Write $\sin x = (e^{ix} - e^{-ix})/2i$ and consider the resulting two integrals with complex integrands. Why is this a good strategy?

c)

$$
\int_{-\infty}^{\infty} dx \, \frac{\sin x}{x} \, \frac{1}{1+x^2}
$$

and check your results numerically..

Let $a \in \mathbb{C}$ with $\text{Re } a > 0$. Use the residue theorem to show that

d)

$$
\int_{-\infty}^{\infty} dx \, e^{-ax^2} = \sqrt{\pi/a}
$$

Now let $a \in \mathbb{R}$ and consider the integral

e)

$$
\int_{-\infty}^{\infty} \frac{dx}{x} \frac{1}{x^2 + a^2}
$$

and define its Cauchy principal value by

$$
\lim_{R \to 0} \left[\int_{-\infty}^{-R} dx \, f(x) + \int_{R}^{\infty} dx \, f(x) \right]
$$

with $f(x) = 1/x(x^2 + a^2)$. Determine the Cauchy principal value using the residue theorem. Is the result consistent with the expectation for a real symmetric integral over an antisymmetric integrand? hint: Go around the pole on a semicircle of radius R and let $R \to 0$.

II.3.3. Matsubara frequency sum

Let $f(z)$ have simple poles at z_j $(j = 1, 2, \ldots)$, and no other singularities. Let $f(|z| \to \infty)$ go to zero faster then $1/z$. Consider the infinite sum

$$
S = -T \sum_{n=-\infty}^{\infty} f(i\Omega_n)
$$

with $\Omega_n = 2\pi T n$ and $T > 0$. Show that

$$
S = \sum_j n(z_j) \operatorname{Res} f(z_j)
$$

where $n(z) = 1/(e^{z/T} - 1)$ is the Bose distribution function.

hint: Show that $n(z)$ has simple poles at $z = i\Omega_n$, and integrate $n(z) f(z)$ over an infinite circle centered on the origin.

note: Sums of this form are important in finite-temperature quantum field theory. In this context, T is the temperature and Ω_n is called a "bosonic Matsubara frequency".

(3 points)