Problem Assignment # 9

 $\begin{array}{c}
11/27/2024 \\
\text{due } 12/04/2024
\end{array}$

II.4.1. 1-d Fourier transforms

Consider a function f of one real variable x. Calculate the Fourier transforms $\hat{f}(k) = \int dx \, e^{-ikx} \, f(x)$ of the following functions:

a)
$$f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \\ 0 & \text{otherwise} \end{cases}$$
.

b)
$$f(x) = \begin{cases} 1 - |x| & \text{for } |x| \le 1 \\ 0 & \text{otherwise} \end{cases}$$
.

c)
$$f(x) = e^{-(x/x_0)^2}$$

(3 points)

II.4.2. 3-d Fourier transforms

Consider a function f of one vector variable $x \in \mathbb{R}^3$. The Fourier transform \hat{f} of f is defined as

$$\hat{f}(\mathbf{k}) = \int d\mathbf{x} \ e^{-i\mathbf{k}\cdot\mathbf{x}} f(\mathbf{x})$$
.

Calculate the Fourier transforms of the following functions:

a)
$$f(\mathbf{x}) = \begin{cases} 1 & \text{for } r < r_0 & (r = |\mathbf{x}|) \\ 0 & \text{otherwise} \end{cases}$$
.

b)
$$f(x) = 1/r$$

hint: Consider $g(\mathbf{x}) = \frac{1}{r} e^{-r/r_0}$ and let $r_0 \to \infty$.

c)
$$f(\mathbf{x}) = e^{-\alpha \mathbf{x}^2}$$
 with $\alpha \in \mathbb{R}$, $\alpha > 0$.

(3 points)

II.4.3. More 1-d Fourier transforms

Consider a function of time f(t) and define its Fourier transform

$$\hat{f}(\omega) := \int dt \ e^{i\omega t} f(t)$$

and its Laplace transform F(z) as

$$F(z) = \pm \int dt \, e^{izt} \, f_{\pm}(t)$$
 $(\pm \text{ for sgn}(\text{Im } z) = \pm 1)$

with z a complex frequency and $f_{\pm}(t) = \Theta(\pm t) f(t)$. Further define

$$F''(\omega) = \frac{1}{2i} \left[F(\omega + i0) - F(\omega - i0) \right]$$
 , $F'(\omega) = \frac{1}{2} \left[F(\omega + i0) + F(\omega - i0) \right]$

Calculate $F''(\omega)$ and $F'(\omega)$ for

- a) $f(t) = e^{-|t|/\tau}$
- b) $f(t) = e^{i\omega_0 t}$

hint: $\lim_{\epsilon \to 0} \epsilon/(x^2 + \epsilon^2) = \pi \delta(x)$, with $\delta(x)$ the familiar Dirac delta-function, which we will study in detail in ch. II §4.5.

Show that in both cases $\int \frac{d\omega}{\pi} \frac{F''(\omega)}{\omega} = F'(\omega = 0)$.

note: These concepts are important for the theory of response functions.

(4 points)

II.4.5. Generalized functions derived from generalized functions

Prove Proposition 7 in ch.II §4.4, which says

Let f(x) and g(x) be generalized functions defined by sequences $f_n(x)$ and $g_n(x)$. Then

- a) the sum f(x) + g(x) defined by the sequence $f_n(x) + g_n(x)$, and
- b) the derivative f'(x) defined by the sequence $f'_n(x)$, and
- c) h(x) = f(ax + b) defined by the sequence $f_n(ax + b)$, and
- d) $\varphi(x) f(x)$ defined by the sequence $\varphi(x) f_n(x)$ with φ a fairly good function, and
- e) $\hat{f}(k)$ defined by the sequence $\hat{f}_n(k) = FT(f_n)(k)$.

are all generalized functions.

(7 points)