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I.1.5 Equivalence relations

Consider a relation ∼ on a set X as in ch. 1 §1.3 def. 1, but with the properties

i) x ∼ x ∀x ∈ X (reflexivity)

ii) x ∼ y ⇒ y ∼ x ∀x, y ∈ X (symmetry)

iii) (x ∼ y ∧ y ∼ z)⇒ x ∼ z (transitivity)

Such a relation is called an equivalence relation. Which of the following are equivalence relations?

a) n divides m on N.

b) x ≤ y on R.

c) g is perpendicular to h on the set of straight lines {g, h, . . .} in the cartesian plane.

d) a equals b modulo n on Z, with n ∈ N fixed.

hint: “a equals b modulo n”, or a = b mod(n), with a, b ∈ Z, n ∈ N, is defined to be true if a − b is
divisible on Z by n; i.e., if (a− b)/n ∈ Z.

(3 points)

Solution

a) No, since it is not symmetric. E.g., 2 ∼ 4, but 4 � 2.

b) No, since it is not symmetric E.g., 2 ≤ 4 but 4 � 2.

c) No, since it is not reflexive: No line is perpendicular to itself. 1pt

d) Yes.

Proof. i) a− a = 0 is divisible by n ⇒ a = a mod(n)

ii) Let a = b mod(n) ⇒ ∃ k ∈ Z : a− b = n
⇒ b− a = (−k)n ⇒ b− a is divisible by n
⇒ b = a mod(n)

iii) Let a = b mod(n) and b = c mod(n)
⇒ ∃ k, ` ∈ Z : a− b = kn and b− c = `n
⇒ a− c = (a− b) + (b− c) = kn + `n = (k + `)n with k + ` ∈ Z
⇒ a = c mod(n)

⇒ a = b mod(n) is an equivalence relation on Z.

2pts
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I.1.6 Bounds for n!

Prove by mathematical induction that

nn/3n < n! < nn/2n ∀ n ≥ 6

hint: (1 + 1/n)n is a monotonically increasing function of n that approaches Euler’s number e for n→∞.

(4 points)

Solution

Proof. First prove nn/3n < n! ∀n ≥ 6:

For n = 6 we have 66/36 = 26 = 64 < 720 = 6!, so the inequality holds.
Now assume mm/3m < m!. Then it follows that

(m+ 1)m+1

3m+1
=

mm

3m
1

3
(1 + 1/m)m(m+ 1)

<
mm

3m
e

3
(m+ 1) by the hint

<
mm

3m
(m+ 1) < m! (m+ 1) by the assumption

= (m+ 1)!

2pts
Now prove nn/2n > n! ∀n ≥ 6:

For n = 6 we have 66/36 = 26 = 64 < 720 = 6!, so the inequality holds.
Now assume mm/2m > m!. Then it follows that

(m+ 1)m+1

2m+1
=

mm

2m
(1 + 1/m)m

2
(m+ 1)

≥ mm

2m
(m+ 1) by the hint

> m!(m+ 1) by the assumption

= (m+ 1)!

2pts
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I.1.7 All ducks are the same color

Find the flaw in the “proof” of the following

proposition: All ducks are the same color.

proof: n = 1: There is only one duck, so there is only one color.

n = m: The set of ducks is one-to-one correspondent to {1, 2, . . . ,m}, and we assume that all m
ducks are the same color.

n = m+1: Now we have {1, 2, . . . ,m,m+1}. Consider the subsets {1, 2, . . . ,m} and {2, . . . ,m,m+1}.
Each of these represent sets of m ducks, which are all the same color by the induction
assumption. But this means that ducks #2 through m are all the same color, and ducks
#1 and m+ 1 are the same color as, e.g., duck #2, and hence all ducks are the same color.

remark: This demonstration of the pitfalls of inductive reasoning is due to George Pólya (1888 - 1985), who
used horses instead of ducks.

(2 points)

Solution

The problem lies with n = 2.

The induction step from n = m to n = m+1 relies on the fact that the subsets {1, 2, . . . ,m} and {2, 3, . . . ,m+
1} have common elements. But for n = 2 we have m = 1, and the the two sets are {1} and {2}, which have
no common elements!

⇒ In order for the proof to be valid, one first has to prove that any two ducks have the same color, which
is not possible. 2pts
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I.2.1. Pauli group

The Pauli matrices are complex 2× 2 matrices defined as

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

Now consider the set P1 that consists of the Pauli matrices and their products with the factors −1 and ±i:

P1 = {±σ0,±iσ0,±σ1,±iσ1,±σ2,±iσ2,±σ3,±iσ3}

Show that this set of 16 elements forms a (nonabelian) group under matrix multiplication called the Pauli
group. It plays an important role in quantum information theory.

(3 points)

Solution

The Pauli matrices obey σ0 σ1 σ2 σ3

σ0 σ0 σ1 σ2 σ3
σ1 σ1 σ0 iσ3 -iσ2
σ2 σ2 -iσ3 σ0 iσ1
σ3 σ3 iσ2 -iσ1 σ0

i.e., σiσj equals either some σk or some σk times ±i. 1pt

Now consider P1: σ0 −σ0 iσ0 −iσ0 σ1 −σ1 iσ1 −iσ1 σ2 −σ2 . . .

σ0 σ0 −σ0 iσ0 −iσ0 σ1 −σ1 iσ1 −iσ1 σ2 −σ2 . . .
−σ0 −σ0 σ0 −iσ0 iσ0 −σ1 σ1 −iσ1 iσ1 −σ2 σ2 . . .
iσ0 iσ0 −iσ0 −σ0 σ0 iσ1 −iσ1 −σ1 σ1 iσ2 −iσ2 . . .
−iσ0 −iσ0 iσ0 σ0 −σ0 −iσ1 iσ1 σ1 −σ1 −iσ2 iσ2 . . .
σ1 σ1 −σ1 iσ1 −iσ1 σ0 . . . . . . . . . . . . . . . . . .
. . .

etc. Even without completing the table, we see that

(i) The set is closed under matrix multiplication, since σiσj is always some σk times either 1 or ±i.

(ii) Matrix multiplication is associative. 1pt

(iii) σ0 is the unit element.

(iv) Each element has an inverse:

σ0σ0 = σ0

(−σ0)(−σ0) = σ0

(iσ0)(−iσ0) = σ0

(−iσ0)(iσ0) = σ0

σ1σ1 = σ0

(−σ1)(−σ1) = σ0

(iσ1)(−iσ1) = σ0

(−iσ1)(iσ1) = σ0

σ2σ2 = σ0

(−σ3)(−σ3) = σ0

(iσ3)(−iσ3) = σ0

(−iσ3)(iσ3) = σ0

σ4σ4 = σ0

(−σ4)(−σ4) = σ0

(iσ4)(−iσ4) = σ0

(−iσ4)(iσ4) = σ0

1pt
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