p-I.1.5

I.1.5 Equivalence relations

Consider a relation \sim on a set X as in ch. 1 §1.3 def. 1, but with the properties

i)
$$x \sim x \quad \forall x \in X$$
 (reflexivity)

ii) $x \sim y \Rightarrow y \sim x \quad \forall x, y \in X$ (symmetry)

iii) $(x \sim y \land y \sim z) \Rightarrow x \sim z$ (transitivity)

Such a relation is called an *equivalence relation*. Which of the following are equivalence relations?

- a) n divides m on \mathbb{N} .
- b) $x \leq y$ on \mathbb{R} .
- c) g is perpendicular to h on the set of straight lines $\{g, h, \ldots\}$ in the cartesian plane.
- d) a equals b modulo n on \mathbb{Z} , with $n \in \mathbb{N}$ fixed.

hint: "a equals b modulo n", or $a = b \mod(n)$, with $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, is defined to be true if a - b is divisible on \mathbb{Z} by n; i.e., if $(a - b)/n \in \mathbb{Z}$.

Solution

- a) No, since it is not symmetric. E.g., $2 \sim 4$, but $4 \approx 2$.
- b) No, since it is not symmetric E.g., $2 \le 4$ but $4 \not\le 2$.
- c) No, since it is not reflexive: No line is perpendicular to itself.

d) Yes.

- *Proof.* i) a a = 0 is divisible by $n \Rightarrow a = a \mod(n)$
- ii) Let $a = b \mod(n) \Rightarrow \exists k \in \mathbb{Z} : a b = n$ $\Rightarrow b - a = (-k)n \Rightarrow b - a$ is divisible by n $\Rightarrow b = a \mod(n)$
- iii) Let $a = b \mod(n)$ and $b = c \mod(n)$ $\Rightarrow \exists k, \ell \in \mathbb{Z} : a - b = kn \text{ and } b - c = \ell n$ $\Rightarrow a - c = (a - b) + (b - c) = kn + \ell n = (k + \ell)n \text{ with } k + \ell \in \mathbb{Z}$ $\Rightarrow a = c \mod(n)$

 $\Rightarrow a = b \mod(n)$ is an equivalence relation on \mathbb{Z} .

1pt

2 pts

(3 points)

p-I.1.6

I.1.6 Bounds for n!

Prove by mathematical induction that

$$n^n/3^n < n! < n^n/2^n \quad \forall \ n \ge 6$$

hint: $(1+1/n)^n$ is a monotonically increasing function of n that approaches Euler's number e for $n \to \infty$.

(4 points)

Solution

Proof. First prove $n^n/3^n < n! \ \forall n \ge 6$: For n = 6 we have $6^6/3^6 = 2^6 = 64 < 720 = 6!$, so the inequality holds. Now assume $m^m/3^m < m!$. Then it follows that

$$\frac{(m+1)^{m+1}}{3^{m+1}} = \frac{m^m}{3^m} \frac{1}{3} (1+1/m)^m (m+1)$$

$$< \frac{m^m}{3^m} \frac{e}{3} (m+1) \quad \text{by the hint}$$

$$< \frac{m^m}{3^m} (m+1) < m! (m+1) \quad \text{by the assumption}$$

$$= (m+1)!$$

Now prove $n^n/2^n > n! \ \forall n \ge 6$:

For n = 6 we have $6^6/3^6 = 2^6 = 64 < 720 = 6!$, so the inequality holds. Now assume $m^m/2^m > m!$. Then it follows that

$$\frac{(m+1)^{m+1}}{2^{m+1}} = \frac{m^m}{2^m} \frac{(1+1/m)^m}{2} (m+1)$$

$$\geq \frac{m^m}{2^m} (m+1) \quad \text{by the hint}$$

$$> m!(m+1) \quad \text{by the assumption}$$

$$= (m+1)!$$

2pts

□ 2pts

I.1.7 All ducks are the same color

Find the flaw in the "proof" of the following

proposition: All ducks are the same color.

- proof: n = 1: There is only one duck, so there is only one color.
 - n = m: The set of ducks is one-to-one correspondent to $\{1, 2, ..., m\}$, and we assume that all m ducks are the same color.
 - n = m+1: Now we have $\{1, 2, ..., m, m+1\}$. Consider the subsets $\{1, 2, ..., m\}$ and $\{2, ..., m, m+1\}$. Each of these represent sets of m ducks, which are all the same color by the induction assumption. But this means that ducks #2 through m are all the same color, and ducks #1 and m+1 are the same color as, e.g., duck #2, and hence all ducks are the same color.

remark: This demonstration of the pitfalls of inductive reasoning is due to George Pólya (1888 - 1985), who used horses instead of ducks.

(2 points)

Solution

The problem lies with n = 2.

The induction step from n = m to n = m+1 relies on the fact that the subsets $\{1, 2, ..., m\}$ and $\{2, 3, ..., m+1\}$ have common elements. But for n = 2 we have m = 1, and the the two sets are $\{1\}$ and $\{2\}$, which have no common elements!

 \Rightarrow In order for the proof to be valid, one first has to prove that any **two** ducks have the same color, which is not possible. 2pts

P-I.2.1

I.2.1. Pauli group

The Pauli matrices are complex 2×2 matrices defined as

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad , \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad ,$$

Now consider the set P_1 that consists of the Pauli matrices and their products with the factors -1 and $\pm i$:

 $P_1 = \{\pm\sigma_0, \pm i\sigma_0, \pm\sigma_1, \pm i\sigma_1, \pm\sigma_2, \pm i\sigma_2, \pm\sigma_3, \pm i\sigma_3\}$

Show that this set of 16 elements forms a (nonabelian) group under matrix multiplication called the Pauli group. It plays an important role in quantum information theory.

(3 points)

Solution

The Pauli matrices obey

	σ_0	σ_1	σ_2	σ_3
σ_0	σ_0	σ_1	σ_2	σ_3
σ_1	σ_1	σ_0	$\mathrm{i}\sigma_3$	$-i\sigma_2$
σ_2	σ_2	$-i\sigma_3$	σ_0	$i\sigma_1$
σ_3	σ_3	$\mathrm{i}\sigma_2$	$-i\sigma_1$	σ_0

i.e., $\sigma_i \sigma_j$ equals either some σ_k or some σ_k times $\pm i$.

Now consider P_1 :

: _		σ_0	$-\sigma_0$	$i\sigma_0$	$ -i\sigma_0$	σ_1	$-\sigma_1$	$i\sigma_1$	$-i\sigma_1$	σ_2	$-\sigma_2$	
_	σ_0	σ_0	$-\sigma_0$	$i\sigma_0$	$-i\sigma_0$	σ_1	$-\sigma_1$	$i\sigma_1$	$-i\sigma_1$	σ_2	$-\sigma_2$	
	$-\sigma_0$	$-\sigma_0$	σ_0	$-i\sigma_0$	$i\sigma_0$	$-\sigma_1$	σ_1	$-i\sigma_1$	$i\sigma_1$	$-\sigma_2$	σ_2	
	$i\sigma_0$	$i\sigma_0$	$-i\sigma_0$	$-\sigma_0$	σ_0	$i\sigma_1$	$-i\sigma_1$	$-\sigma_1$	σ_1	$i\sigma_2$	$-i\sigma_2$	
	$-i\sigma_0$	$-i\sigma_0$	$i\sigma_0$	σ_0	$-\sigma_0$	$-i\sigma_1$	$i\sigma_1$	σ_1	$-\sigma_1$	$-i\sigma_2$	$i\sigma_2$	
	σ_1	σ_1	$-\sigma_1$	$i\sigma_1$	$-i\sigma_1$	σ_0						

etc. Even without completing the table, we see that

- (i) The set is closed under matrix multiplication, since $\sigma_i \sigma_j$ is always some σ_k times either 1 or $\pm i$.
- (ii) Matrix multiplication is associative.
- (iii) σ_0 is the unit element.
- (iv) Each element has an inverse:

1 pt

1pt

 $1 \mathrm{pt}$