I.2.3 The group S_3

- a) Compile the group table for the symmetric group S_3 . Is S_3 abelian?
- b) Find all subgroups of S_3 . Which of these are abelian?

Solution

a) The elements of S_3 are

$$
P_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ P_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \ P_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \ P_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \ P_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ P_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}
$$
1pt

With this representation, the group table reads

 S_3 is not abelian: E.g., $P_2 \circ P_3 = P_5$, but $P_3 \circ P_2 = P_4$. 1pt

- b) Consider the group table from part a), and consider subsets of S_3 that contain
	- 5 elements: $\{P_2, P_3, P_4, P_5, P_6\}$ does not contain $E = P_1$. ${P_1, P_3, P_4, P_5, P_6}$ is not closed since $P_3 \circ P_4 = P_2$. The other 4 candidates are not closed either. 1pt • 4 elements: The subset must contain $P_1 \Rightarrow$ We need to conider only ${P_1, P_2, P_3, P_4}$ is not closed since $P_2 \circ P_3 = P_5$. ${P_1, P_2, P_3, P_5}$ is not closed since $P_3 \circ P_2 = P_4$.
		- ${P_1, P_2, P_4, P_5}$ is not closed since $P_4 \circ P_2 = P_3$. ${P_1, P_3, P_4, P_5}$ is not closed since $P_3 \circ P_4 = P_2$.
		- The other 6 candidates are not closed either. 1pt
	- 3 elements: Consider $\{P_1, P_4, P_5\}$, whose group table is

- ${P_1, P_4}$ and ${P_1, P_5}$ are not closed. 1pt
- 1 element: $\{P_1\}$ trivially is an abelian subgroup, none of the other elements are. 1pt
- **Summary:** The subgroups of S_3 are $\{P_1, P_4, P_5\}$, $\{P_1, P_2\}$, $\{P_1, P_3\}$, $\{P_1, P_6\}$, $\{P_1\}$. They all are abelian.

I.2.4 Subgroups

Let (G, \vee) be a group and let $H \subset G$ with $H \neq \emptyset$. Show that H is a subgroup of G if and only if $a, b \in H$ implies $a \vee b^{-1} \in H$.

$$
(5\,\,\mathrm{points})
$$

Solution

We first show that the condition is sufficient, i.e., that $a, b \in H \Rightarrow a \vee b^{-1} \in H$ implies that H is a subgroup. The set of the set Suppose $a, b \in H$. Then $a \vee b^{-1} \in H$ since H is a group. In particular, $b = a \in H$ implies $a \vee a^{-1} = e \in H$ and if $a = e$, then $e \vee b^{-1} = b^{-1} \in H$ (*). So the requirements iii. (existence of a neutral element) and iv. (existence of an inverse) from ch. I $\S 2.1$ Def. 1 are fulfilled. 1pt Also, requirement ii. (associativity) is fulfilled since G and H share the associative operation \vee . Now consider $a \vee b = a \vee (b^{-1})^{-1} \in H$, since from $(*)$ we know that $b^{-1} \in H$ if $b \in H$. So requirement **i.** (closure) is fulfilled. Now we have shown that H is a group, i.e., the condition is sufficient. 1pt Next we show that the condition is necessary, i.e., that $a, b \in H \neq a \vee b^{-1} \in H$ implies that H is not a subgroup. $1pt$

Suppose $\exists a, b \in H$ such that $a \vee b^{-1} \notin H$. In order for H to be a group, $b \in H$ must imply $b^{-1} \in H$. Now we have $a, b^{-1} \in H$, but $a \vee b^{-1} \notin H$. Thus requirement i (closure) is violated, and hence H is not a group. 1pt

Now we have shown that the condition is necessary, which completes the proof.

I.3.1. Fields

- a) Show that the set of rational numbers Q forms a commutative field under the ordinary addition and multiplication of numbers.
- b) Consider a set F with two elements, $F = \{\theta, e\}$. On F, define an operation "plus" (+), about which we assume nothing but the defining properties

 $\theta + \theta = \theta$, $\theta + e = e + \theta = e$, $e + e = \theta$

Further, define a second operation "times" (\cdot) , about which we assume nothing but the defining properties

 $\theta \cdot \theta = e \cdot \theta = \theta \cdot e = \theta$, $e \cdot e = e$

Show that with these definitions (and **no** additional assumptions), F is a field.

(7 points)

Solution

- a) $\mathbb Q$ is a group under addition with neutral element $0 \in \mathbb Q$:
	- (i) $q_1 + q_2 \in \mathbb{Q} \ \forall \ q_1, q_2 \in \mathbb{Q}$
	- (ii) Addition of rational numbers is associative and commutative
	- (iii) The number zero is an element of \mathbb{Q} , and $0 + q = q \; \forall \; q \in \mathbb{Q}$
	- (iv) Let $q \in \mathbb{Q}$. Then $\exists -q : q + (-q) = 0$. 1pt

Furthermore, $\mathbb{Q} \setminus \{0\}$ is a group under multiplication:

- (i) $q_1q_2 \in \mathbb{Q} \ \forall \ q_1, q_2 \in \mathbb{Q}$
- (ii) Multiplication of rational numbers is associative and commutative
- (iii) The number 1 is an element of \mathbb{Q} , and $1 \cdot q = q \; \forall \; q \in \mathbb{Q}$
- (iv) Let $q \in \mathbb{Q} \setminus \{0\}$. Then $\exists q^{-1} \equiv 1/q : q \cdot q^{-1} = 1$

Finally, ordinary addition and multiplication on $\mathbb Q$ are distributive. $\Rightarrow \mathbb Q$ is a commutative field. 1pt

- b) We need to show that F is a group under addition.
	- (i) $a + b \in F \ \forall \ a, b \in F$ by definition \Rightarrow Closure \checkmark
	- (ii) $(\theta + e) + \theta = e + \theta = e = \theta + (e + \theta)$ $(e+e) + \theta = \theta + \theta = e + (e + \theta)$ \Rightarrow "+" is associative 1pt
	- (iii) θ is the neutral element by definition
	- (iv) $-\theta = \theta$ and $-e = e$ by definition \Rightarrow existence of an inverse \checkmark
	- (v) " $+$ " is commutative by definition

 \Rightarrow F is an abelian group under "+" 1pt

We also need to show that $F \setminus \{\theta\}$ is a group under the multiplication "·". But $F \setminus \{\theta\} = \{e\}$, and hence the group axioms are all fulfilled by definition. $1pt$

Finally, we need to check the distributive laws. Since the multiplication is abelian we only need to show that

$$
(a+b)\cdot c = a\cdot c + b\cdot c \,\forall a, b, c \in F \qquad (*)
$$

- (i) $c = \theta \Rightarrow (a + b) \cdot c = (a + b) \cdot \theta = a \cdot c + a \cdot b \forall a, b \in F$ 1pt
- (ii) $c = e$. If either $a = \theta$ or $b = \theta$, (*) holds. If $a = b = e$, then $(e + e) \cdot e = \theta \cdot e = \theta$ and $e \cdot e + e \cdot e = \theta + \theta = \theta$

 \Rightarrow The distributive laws hold

 \Rightarrow F is a field. 1pt

p. - I.4.1

I.4.1 Function space

Consider the set C of continuous functions $f : [0,1] \to \mathbb{R}$. Show that by suitably defining an addition on C, and a multiplication with real numbers, one can make C an additive vector space over \mathbb{R} .

(2 points)

Solution

On C, define

$$
(f+g)(x) : -f(x) + g(x)
$$

If f and g are continuous, then so is the such defined $f + g$. \Rightarrow Closure \checkmark Furthermore, since $f(x) \in \mathbb{R}$, C inherits all other group properties of $(\mathbb{R}, +)$. \Rightarrow C is an additive group. 1pt

Now define multiplication with scalars $\lambda \in \mathbb{R}$ by

$$
(\lambda f)(x) := \lambda f(x)
$$

If f is continuous, then so is the such defined (λf) .

Furthermore, since $\lambda \in \mathbb{R}$ and $f(x) \in \mathbb{R}$, this multiplication with scalars is bilinear and associative, as it inherits these properties from R under ordinary addition and multiplication of numbers.

Finally,

$$
(1\,f)(x) = 1\,f(x) = f(x) \qquad \forall \ x \in [0,1] \qquad \Rightarrow \qquad 1\,f = f
$$

 \Rightarrow C is an R-vector space. 1pt