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1.4.2. The space of rank-2 tensors

a) Prove the theorem of ch.1 §4.3: Let V' be a vector space V of dimension n over K. Then the

space of rank-2 tensors, defined via bilinear forms f : V x V — K, forms a vector space of

dimension nZ2.

b) Consider the space of bilinear forms f on V that is equivalent to the space of rank-2 tensors,
and construct a basis of that space.

hint: On the space of tensors, define a suitable addition and multiplication with scalars, and
construct a basis of the resulting vector space.
(5 points)

Solution

a) We know that the rank-2 tensors are one-to-one correspondent to bilinear forms f(z,y). On the
set of bilinear forms, define an addition by

(f +9)(z,y) == f(z,y) + g(z,y)

This makes the set of forms an additive group. Also define a multiplication with scalars A € K
by
M)z, y) == A f(z,y)

This makes the set of forms a K-vector space. On the space of rank-2 tensors ¢, u,... this

corresponds to defining the tensor ¢t + u as the tensor with coordinates

(t —+ U)ij = tij -+ uij 1pt

and the tensor At as the one with coordinates

(At)ij = Atij
The space of tensors is now a K-vector space. 1pt
Consider a basis {e;{ of V, and construct n? tensors

Ef =676}

Define a tensor t as a linear combination of the F;;,
t= Z Tij Eij
ij

with coefficients 7% € K. This tensor has coordinates

gkl _ ZTM (B = M
ij

= Any rank-2 tensor can be written as a linear combination of the E;;, with the coordinates ¢/
of t as the coeflicients: -
t=> t9E;

ij

= The FE;; span the space. 1pt
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Now, in order for ¢ to be the null tensor, all of its coordinates must be zero, so t = 0 implies
t9 =0Vi,j.
= The F;; are linearly independent.

= The n? rank-2 tensors E;; form a basis of the space of rank-2 tensors, and hence the space

has dimension n2.

1pt
Let f;; be the bilinear form that corresponds to the tensor E;;. Then
fij(ex,e) = (Eij)y = i 6

with ¢;; the Kronecker symbol.

For arbitrary z,y € V we have
fii(z,y) = 2"y fler, &) = a¥yl6idj = a'y?
= The set of n? bilinear forms f;; defined by
filwy) = o'y

forms a basis of the space of bilinear forms. 1pt
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1.4.5. R as a metric space

Consider the reals R with p : R x R — R defined by p(z,y) = | — y|. Show that this definition

makes R a metric space.

(3 points)
Solution
Positive definiteness and symmetry are obvious. 1pt
Now prove the triangle inequality:
Proof. By definition of || we have zy < |z| - |y| Vz,y € R. Therefore,
0< 2@ —y)z—y) + 2]z —yl- |~y pt
And hence
(x—2)2 = 2% —2z2+2°
< 22wz 4 2242w —y)(z—y) + 2z -yl |2 -yl
= 2® =22+ 2" +2(x —y)z -2 —yly + 2z —y| [z —y|
= 2% = 202422 + 202 — 22y + 2% — 2yz 4+ 2z —y| - |2 — v
= 2 —2oy+y’ +y -2z + 22+ 2z —y|- |z -y
= (-9 +y—2)°+2z—yl |2yl
= (e —yl+ly— =)’
But (z — 2)? > 0, and hence we have the triangle inequality
|z —z[ <[z —yl+]y -2
O

1pt
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1.4.6. Limits of sequences

a) Show that a sequence in a metric space has at most one limit.

hint: Assume there are two limits, and use the triangle inequality to show that they must be

the same.

b) Show that every sequence with a limit is a Cauchy sequence.

Solution

a) Prove uniqueness:

Proof. Let x, be a sequence. Suppose x,, = z* and z,, = y*. Then
plx*, y*) < pla*,x,) + p(y*,z,) Vz, by the triangle equation

But
lim p(a*,z,) = lim p(y*,z,) =0

n—oo n—oo

and hence
p(z*,y*) =0 = =y

b) Prove Cauchy-ness:
Proof. Let x, have a limit z*: z,, = z*. Then

P(Tn, Tm) < p(Xn, ) + p(Tm, 27)
Let § > 0. Then 3N € N such that p(z,,z*) <d Vn > N.
Now let € > 0 and choose § = €/2. Then IN > 0 such that

P(Tn, Tm) < p(@n, %) + p(Tm, ") < €/2+€/2=¢

provided n,m > N.

(3 points)

1pt

1pt

1pt



