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I.4.2. The space of rank-2 tensors

a) Prove the theorem of ch.1 §4.3: Let V be a vector space V of dimension n over K. Then the
space of rank-2 tensors, defined via bilinear forms f : V × V → K, forms a vector space of
dimension n2.

b) Consider the space of bilinear forms f on V that is equivalent to the space of rank-2 tensors,
and construct a basis of that space.

hint: On the space of tensors, define a suitable addition and multiplication with scalars, and
construct a basis of the resulting vector space.

(5 points)

Solution

a) We know that the rank-2 tensors are one-to-one correspondent to bilinear forms f(x, y). On the
set of bilinear forms, define an addition by

(f + g)(x, y) := f(x, y) + g(x, y)

This makes the set of forms an additive group. Also define a multiplication with scalars λ ∈ K
by

(λ f)(x, y) := λ f(x, y)

This makes the set of forms a K-vector space. On the space of rank-2 tensors t, u, . . . this

corresponds to defining the tensor t+ u as the tensor with coordinates

(t+ u)ij = tij + uij 1pt

and the tensor λ t as the one with coordinates

(λ t)ij = λ tij

The space of tensors is now a K-vector space. 1pt

Consider a basis {ei{ of V , and construct n2 tensors

Ekl
ij = δ k

i δ l
j

Define a tensor t as a linear combination of the Eij ,

t =
∑
ij

τ ij Eij

with coefficients τ ij ∈ K. This tensor has coordinates

tkl =
∑
ij

τ ij (Eij)
kl

= τkl

⇒ Any rank-2 tensor can be written as a linear combination of the Eij , with the coordinates tij

of t as the coefficients:
t =

∑
ij

tij Eij

⇒ The Eij span the space. 1pt
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Now, in order for t to be the null tensor, all of its coordinates must be zero, so t = 0 implies
tij = 0 ∀i, j.
⇒ The Eij are linearly independent.

⇒ The n2 rank-2 tensors Eij form a basis of the space of rank-2 tensors, and hence the space
has dimension n2.

1pt

b) Let fij be the bilinear form that corresponds to the tensor Eij . Then

fij(ek, el) = (Eij)kl = δij δkl

with δij the Kronecker symbol.

For arbitrary x, y ∈ V we have

fij(x, y) = xkylf(ek, el) = xkylδikδjl = xiyj

⇒ The set of n2 bilinear forms fij defined by

fij(x, y) = xiyj

forms a basis of the space of bilinear forms. 1pt
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I.4.5. R as a metric space

Consider the reals R with ρ : R × R → R defined by ρ(x, y) = |x − y|. Show that this definition
makes R a metric space.

(3 points)

Solution

Positive definiteness and symmetry are obvious. 1pt

Now prove the triangle inequality:

Proof. By definition of |x| we have xy ≤ |x| · |y| ∀x, y ∈ R. Therefore,

0 ≤ 2(x− y)(z − y) + 2 |x− y| · |z − y| 1pt
And hence

(x− z)2 = x2 − 2xz + z2

≤ x2 − 2xz + z2 + 2(x− y)(z − y) + 2|x− y| · |z − y|
= x2 − 2xz + z2 + 2(x− y)z − 2(x− y)y + 2|x− y| · |z − y|
= x2 − 2xz + z2 + 2xz − 2xy + 2y2 − 2yz + 2|x− y| · |z − y|
= x2 − 2xy + y2 + y2 − 2yz + z2 + 2|x− y| · |z − y|
= (x− y)2 + (y − z)2 + 2|x− y| · |z − y|
= (|x− y|+ |y − z|)2

But (x− z)2 ≥ 0, and hence we have the triangle inequality

|x− z| ≤ |x− y|+ |y − z|

1pt
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I.4.6. Limits of sequences

a) Show that a sequence in a metric space has at most one limit.

hint: Assume there are two limits, and use the triangle inequality to show that they must be
the same.

b) Show that every sequence with a limit is a Cauchy sequence.

(3 points)

Solution

a) Prove uniqueness:

Proof. Let xn be a sequence. Suppose xn ⇒ x∗ and xn ⇒ y∗. Then

ρ(x∗, y∗) ≤ ρ(x∗, xn) + ρ(y∗, xn) ∀xn by the triangle equation

But
lim

n→∞
ρ(x∗, xn) = lim

n→∞
ρ(y∗, xn) = 0

and hence
ρ(x∗, y∗) = 0 ⇒ x∗ = y∗

1pt

b) Prove Cauchy-ness:

Proof. Let xn have a limit x∗: xn ⇒ x∗. Then

ρ(xn, xm) ≤ ρ(xn, x∗) + ρ(xm, x
∗) 1pt

Let δ > 0. Then ∃N ∈ N such that ρ(xn, x
∗) < δ ∀n > N .

Now let ε > 0 and choose δ = ε/2. Then ∃N > 0 such that

ρ(xn, xm) ≤ ρ(xn, x∗) + ρ(xm, x
∗) < ε/2 + ε/2 = ε

provided n,m > N .

1pt


