I.4.7. Banach space

Let B be a K-vector space $(K = \mathbb{R} \text{ or } \mathbb{C})$ with null vector θ . Let $|| \dots || : B \to \mathbb{R}$ be a mapping such that

- (i) $||x|| \ge 0 \forall x \in \mathbf{B}$, and ||x|| = 0 iff $x = \theta$.
- (ii) $||x + y|| \le ||x|| + ||y|| \forall x, y \in \mathbf{B}.$
- (iii) $||\lambda x|| = |\lambda| \cdot ||x|| \quad \forall x \in \mathbf{B}, \lambda \in \mathbf{K}.$

Then we call $|| \dots ||$ a **norm** on B, and ||x|| the **norm** of x.

Further define a mapping $d : \mathbf{B} \times \mathbf{B} \to \mathbb{R}$ by

 $d(x,y) := ||x - y|| \ \forall \ x, y \in \mathcal{B}$

Then we call d(x, y) the **distance** between x and y.

a) Show that d is a metric in the sense of ch. I §4.5, i.e., that every linear space with a norm is in particular a metric space.

If the normed linear space B with distance/metric d is complete, then we call B a **Banach space** or **B-space**.

b) Show that \mathbb{R} and \mathbb{C} , with suitably defined norms, are B-spaces. (For the completeness of \mathbb{R} you can refer to §4.5 Example (11), and you don't have to prove the completeness of \mathbb{C} unless you insist.)

Now let B^{*} be the dual space of B, i.e., the space of linear forms ℓ on B, and define a norm of ℓ by the "sup norm"

$$||\ell|| := \sup_{||x||=1} \{|\ell(x)|\}$$

c) Show that the such defined norm on B^* is a norm in the sense of the norm defined on B above.

(In case you're wondering: B^* is complete, and hence a B-space, but the proof of completeness is difficult.)

(5 points)

Solution

a) $d(x,y) = ||x - y|| \ge 0 \ \forall x, y \in \mathbf{B}$ by property (i) of the norm.

Also, d(x, y) = 0 iff $x - y = \theta \Leftrightarrow x = y$. \Rightarrow positive definiteness \checkmark

Furthermore,

d(y,x) = ||y-x|| = ||(-(x-y)|| = ||x-y|| by property (iii) of the norm = d(x,y)

 \Rightarrow symmetry \checkmark

Finally

$$d(y,z) = ||y - z|| = ||x - y + y - z|| \le ||x - y|| + ||y - z||$$
by property (ii) of the norm
= $d(x,y) + d(y,z)$

 \Rightarrow triangle inequality \checkmark

b) Consider \mathbb{R} as an \mathbb{R} -vector space and define

$$\|x\| := |x| \quad \forall x \in \mathbb{R}$$

Then $\|...\|$: $\mathbb{R} \to \mathbb{R}$ has all of the properties required of a norm. Furthermore, it follows from §4.5 example (11) that every Cauchy sequence has a limit, so \mathbb{R} is complete and hence a B-space.

The same arguments apply to \mathbb{C} with a norm defined by

$$||z|| := |z| = \sqrt{z_1^2 + z_2^2}$$

This makes \mathbb{C} a B-space (assuming completeness).

- c) Check the requirements for a norm:
 - (i) $\|\ell\| = \sup_{\|x\|=1} \{|\ell(x)|\} \implies \|\ell\| \ge 0 \text{ since } |\ell(x)| \ge 0$ 0.5 pt

The null vector in B^{*} is the null form ℓ_0 defined by $\ell_0(x) = 0 \quad \forall x \in B \Rightarrow ||\ell_0|| = 0$

Conversely, let $\|\ell\| = 0$. Since the set of $x \in B$ with $\|x\| = 1$ spans B, ℓ must equal ℓ_0 .

$$\Rightarrow \|\ell\| = 0 \text{ iff } \ell = \ell_0.$$

(ii) $\|\ell_1 + \ell_2\| = \sup_{\|x\|=1} \{|\ell_1(x) + \ell_2(x)|\} \le \sup_{\|x\|=1} \{|\ell_1(x)| + |\ell_2(x)|\} = \|\ell_1\| + \|\ell_2\|$ That is, B^{*} inherits the triangle inequality from \mathbb{R} or \mathbb{C} . 1pt

(iii)
$$||a \ell|| = \sup_{||x||=1} \{|a \ell(x)|\} = \sup_{||x||=1} \{|a| |\ell(x)|\} = |a| \sup_{||x||=1} \{\ell(x)\} = |a| ||\ell||$$

 $\forall a \in \mathbb{R} \text{ or } \mathbb{C}, \ell \in \mathcal{B}^* \quad 0.5 \text{ pt}$

 \Rightarrow The sup norm is indeed a norm

1pt

1pt