p - I.4.7 - 1

I.4.7. Banach space

Let B be a K-vector space $(K = \mathbb{R}$ or $\mathbb{C})$ with null vector θ . Let $|| \dots || : B \to \mathbb{R}$ be a mapping such that

- (i) $||x|| \ge 0 \ \forall \ x \in B$, and $||x|| = 0$ iff $x = \theta$.
- (ii) $||x + y|| \le ||x|| + ||y|| \forall x, y \in B.$
- (iii) $||\lambda x|| = |\lambda| \cdot ||x|| \forall x \in \mathcal{B}, \lambda \in \mathcal{K}.$

Then we call $||...||$ a norm on B, and $||x||$ the norm of x.

Further define a mapping d : $B \times B \rightarrow \mathbb{R}$ by

 $d(x, y) := ||x - y|| \forall x, y \in B$

Then we call $d(x, y)$ the **distance** between x and y.

a) Show that d is a metric in the sense of ch. I $\S4.5$, i.e., that every linear space with a norm is in particular a metric space.

If the normed linear space B with distance/metric d is complete, then we call B a **Banach space** or B-space.

b) Show that $\mathbb R$ and $\mathbb C$, with suitably defined norms, are B-spaces. (For the completeness of $\mathbb R$ you can refer to §4.5 Example (11), and you don't have to prove the completeness of $\mathbb C$ unless you insist.)

Now let B[∗] be the dual space of B, i.e., the space of linear forms ℓ on B, and define a norm of ℓ by the "sup norm"

$$
||\ell|| := \sup_{||x||=1} \{ |\ell(x)| \}
$$

c) Show that the such defined norm on B[∗] is a norm in the sense of the norm defined on B above.

(In case you're wondering: B[∗] is complete, and hence a B-space, but the proof of completeness is difficult.)

(5 points)

Solution

a) $d(x, y) = ||x - y|| \ge 0 \,\forall x, y \in B$ by property (i) of the norm. Also, $d(x, y) = 0$ iff $x - y = \theta \Leftrightarrow x = y$.

 \Rightarrow positive definiteness \checkmark

Furthermore,

$$
d(y, x) = ||y - x|| = ||(- (x - y)||) = ||x - y||
$$
 by property (iii) of the norm

$$
= d(x, y)
$$

 \Rightarrow symmetry \checkmark

Finally

$$
d(y, z) = ||y - z|| = ||x - y + y - z|| \le ||x - y|| + ||y - z||
$$
by property (ii) of the norm

$$
= d(x, y) + d(y, z)
$$

 \Rightarrow triangle inequality \checkmark

b) Consider $\mathbb R$ as an $\mathbb R$ -vector space and define

$$
||x|| := |x| \quad \forall x \in \mathbb{R}
$$

Then $\|\ldots\|$: $\mathbb{R} \to \mathbb{R}$ has all of the properties required of a norm. Furthermore, it follows from §4.5 example (11) that every Cauchy sequence has a limit, so R is complete and hence a B-space.

The same arguments apply to $\mathbb C$ with a norm defined by

$$
||z|| := |z| = \sqrt{z_1^2 + z_2^2}
$$

This makes $\mathbb C$ a B-space (assuming completeness). 1pt

- c) Check the requirements for a norm:
	- (i) $\|\ell\| = \sup_{\|x\|=1} {\{|\ell(x)|\}} \implies \|\ell\| \ge 0 \quad \text{since } |\ell(x)| \ge 0$ 0.5 pt

The null vector in B^{*} is the null form ℓ_0 defined by $\ell_0(x) = 0 \quad \forall x \in B \Rightarrow ||\ell_0|| = 0$

Conversely, let $||\ell|| = 0$. Since the set of $x \in B$ with $||x|| = 1$ spans B, ℓ must equal ℓ_0 .

$$
\Rightarrow \|\ell\| = 0 \text{ iff } \ell = \ell_0. \tag{1pt}
$$

 $\text{(ii)} \;\;\|\ell_1 + \ell_2\| = \sup_{\|x\|=1} \left\{|\ell_1(x) + \ell_2(x)|\right\} \leq \sup_{\|x\|=1} \left\{|\ell_1(x)| + |\ell_2(x)|\right\} = \|\ell_1\| + \|\ell_2\|$ That is, B^* inherits the triangle inequality from $\mathbb R$ or $\mathbb C$. 1pt

(iii)
$$
||a \ell|| = \sup_{\|x\|=1} \{|a \ell(x)|\} = \sup_{\|x\|=1} \{|a| |\ell(x)|\} = |a| \sup_{\|x\|=1} \{\ell(x)\} = |a| ||\ell||
$$

 $\forall a \in \mathbb{R} \text{ or } \mathbb{C}, \ell \in B^* \quad 0.5 \text{ pt}$

 \Rightarrow The sup norm is indeed a norm