PHYS 610 Mathematical Methods for Scientists F 2024

Problem Assignment # 9 11/27/2024
due 12/04/2024

I1.4.1. 1-d Fourier transforms

Consider a function f of one real variable . Calculate the Fourier transforms f (k) = [ dz e~ f(x) of the
following functions:

2) flz) = {1 or e =1

0 otherwise

1—|z| for|z| <1
0 otherwise

b) f(x):{

¢) f(w) = ey
(3 points)

I1.4.2. 3-d Fourier transforms

Consider a function f of one vector variable € IR3. The Fourier transform f of f is defined as
f) = [ do e fa)

Calculate the Fourier transforms of the following functions:

a) f(z) = {

b) f(x) =1/r

hint: Consider g(x) = %e‘T/TU and let rg — oo.

1 forr < (r=lz|)

0 otherwise

c) f(x) = e with o € R, o > 0.

(3 points)

11.4.3. More 1-d Fourier transforms
Consider a function of time f(¢) and define its Fourier transform
flw) = [ at e s
and its Laplace transform F'(z) as
F(z) = i/dt et fi(t) (£ for sgn(Im z) = +1)
with z a complex frequency and fi (t) = ©(£t) f(¢). Further define

F'(w) = i[F(w+i0)fF(o.)—z'O)} , Fl(w) =

=5 [F(w +10) + F(w —i0)]

N |

Calculate F"'(w) and F'(w) for



a) f(t) = e7/"
b) f(t) = e

hint: lime o€/ (22 + €2) = w6(x), with () the familiar Dirac delta-function, which we will study in
detail in ch. II §4.5.

Show that in both cases | % w =F'(w=0).
note: These concepts are important for the theory of response functions.

(4 points)
I1.4.5. Generalized functions derived from generalized functions

Prove Proposition 7 in ch.IT §4.4, which says

Let f(z) and g(x) be generalized functions defined by sequences f,(z) and g,(z). Then
a) the sum f(z) + g(z) defined by the sequence f,(z) + gn(x), and

b) the derivative f'(x) defined by the sequence f/ (z), and

(x) = f(ax + b) defined by the sequence f,(az +b), and

(

d ) f(x) defined by the sequence ¢(x) f,(x) with ¢ a fairly good function,and

)
c) h
) ol

e) f(k) defined by the sequence f,(k) = FT(f,)(k).
are all generalized functions.

(7 points)
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2.4.1. 1-d Fourier transforms

Consider a function f of one real variable z. Calculate the Fourier transforms f(k) = [dxe ™ f(x)
of the following functions:

2 f(a:)={1 el =1

0 otherwise

b) f(x){l_m for |x|§1-

0 otherwise

©) f(z) = e~ /mor

(3 points)

Solution
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11.4.2. 3-d Fourier transforms

Consider a function f of one vector variable € R3. The Fourier transform f of f is defined as

) = [ do e fa)
Calculate the Fourier transforms of the following functions:

1 forr<mg (r=lx|)
0 otherwise

a) f(w)={

b) f(z) =1/r
hint: Consider g(x) = %e”/”’ and let rg — oo.
c) f(x) = e~ with o € R, o > 0.
(3 points)

Solution
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2.4.3. More 1-d Fourier transforms

Consider a function of time f(t) and define its Fourier transform
flw) = [ ar e s
and its Laplace transform F(z) as
F(z) = :l:i/dt et fu(t) (% for sgn(Im z) = +1)
with z a complex frequency and fi (¢) = ©(=%t) f(¢). Further define

F(w) = % Flw+i0) — Flw—i0)] ,  F'(w) = < [F(w+i0) + Fw — i0)]

N |

Calculate F'(w) and F’(w) for
a) £ = el
b) f(t) = ot

hint: lim¢_,0€/(2% + €2) = 7 §(x), with §(x) the familiar Dirac delta-function, which we will
study in detail in Week 10.

Show that in both cases [ % w = F'(w=0).
note: These concepts are important for the theory of response functions.

(4 points)

Solution
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11.4.5. Generalized functions derived from generalized functions

Prove Proposition 1 in ch.2 §4.4, which says

Proposition Let f(z) and g(z) be generalized functions defined by sequences f,(z) and g,(z).
Then
the following are all generalized functions:

a) f(x) + g(z) defined by the sequence f,(z) + gn(x)

b) f'(x) defined by f,(x)

¢) h(z) = f(ax + b) defined by the sequence f,(ax + b)

d) ¢(x) f(x) defined by the sequence ¢(x) fn(z) with ¢ a fairly good function,
)

¢) f(k) defined by the sequence f,, (k) = FT(fn)(k).

(7 points)

Solution

For each of the statements in the proposition we must show

(i) the sequence in question is a sequence of good functions,

(ii) the sequence in question is a regular sequence,

(iii) different choices of equivalent sequences f,, g, lead to equivalent sequences that define the new
functions.

Property (i) is true for all statements by §4.3 remark (2). 1pt

Now check (ii) and (iii) for the various statements:

a) limy, oo [ da (fo(x) + gn(2)) F(z) = limy oo [ da fr(z) F(z) + limy, o0 [ dz g, () F(2)

The limits on the rhs exist since f,, and g, are regular sequences, and hence the limit on the lhs
exists, so (ii) is true. 1pt
Also, different equivalent sequences f,, and g, lead to the same limiting values on the rhs = the
resulting sequences f,, + g, are all equivalent, so (iii) is true. 1pt
b) lim, o0 [ da f(x) F(z) = —lim, oo [ dz fr(z) F'(2)

But F’ € v = the limit on the rhs exists and is the same for all equivalent sequences f,(z).

= The sequences f/ (x) on the lhs are regular and equivalent of the sequences f, are equivalent.

= (ii) and (ii) are true for Statement b). 1pt
The same arguments apply to

¢) lim,, — oo [dz fn(az +b) F(z) = ﬁ lim, o0 [ dz fo(z) F((z —)/2) 1pt
and

d) im0 [ dz (@(2) fu(2)) F(2) = limn—eo [ dz fo(z) (¢(2) F(2)) 1pt
since F'((x — b)/a) and ¢(x) F(x) are both good functions.

Finally,

e) limy, o0 [ dkhatf, (k) F(k) = lim,_oo [ dz f,(z) F(—x)
by Parseval’s theorem, and hence the same arguments apply again. 1pt
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