I.1.2 Distributive property of the union and intersection relations (5 pts)

a) Prove the distributive properties from ch.I §1.1 Remark 5 viz.,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

for any three sets A, B, C.

b) Illustrate these properties by means of representative Venn diagrams.

Solution

a) Let $x \in A \cap (B \cup C)$. $\Rightarrow x \in A \wedge (x \in B \vee x \in C)$. 1st case: $x \in B \wedge x \in A \Rightarrow x \in A \cap B \Rightarrow x \in (A \cap B) \cup (A \cap C)$ 2nd case: $x \in C \wedge x \in A \Rightarrow x \in A \cap C \Rightarrow x \in (A \cap B) \cup (A \cap C)$ \Rightarrow In either case, $x \in (A \cap B) \cup (A \cap C)$ $\Rightarrow A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$

1pt

Let $x \in (A \cap B) \cup (A \cap C)$. $\Rightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C)$ 1st case: $x \in A \land x \in B$. $\Rightarrow x \in A \land x \in B \cup C$

2nd case: $x \in A \land x \in C$. $\Rightarrow x \in A \land x \in B \cup C$

 \Rightarrow In either case, $x \in A \cap (B \cup C)$.

 $\Rightarrow (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Hence,
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

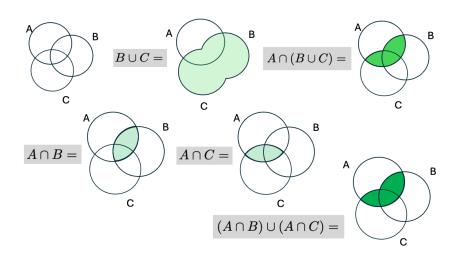
1pt

Exactly analogous arguments prove the second set equality.

1pt

b) The first equality can be illustrated as follows:

1pt



The second equality can be illustrated analogously.

1pt

NB: These drawings don't prove anything, they just make the result plausible. In order to graphically prove the statements one would have to consider all possible overlapping situations.