I.1.4 Parabolic Mapping (4 pts)

Consider $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = a n^2 + b n + c$, with $a, b, c \in \mathbb{Z}$.

- a) For which triplets (a, b, c) is f surjective?
- b) For which (a, b, c) is f injective?

Solution

a) f(n) has a global extremum if $a \neq 0$. $\Rightarrow a = 0$ is necessary for f to be surjective.

Now consider
$$f(n) = bn + c$$
.

If b = 0, then $f(n) \equiv c$ and hence f is not surjective.

If $b \ge 2$ or $b \le -2$, then f(n) never equals $c \pm 1$, and hence f is not surjective.

If $b = \pm 1$ with arbitrary c, then f(n) covers all of \mathbb{Z} .

$$\Rightarrow f$$
 is surjective for $(a, b, c) = (0, \pm 1, c \in \mathbb{Z})$.

2pts

b) For f to be injective, f(n) = f(m) must imply n = m. Let n = m + x with $x \in \mathbb{Z}$. Then f(n) = f(m) takes the form

$$am^2 + bm = am^2 + 2axm + ax^2 + bm + bx$$

$$\Rightarrow ax^2 + (2am + b)x = 0 \qquad (*)$$

x = 0 is always a solution of (*), which implies n = m.

For $x \neq 0$ the only solution of (*) is

$$x = -2m - b/a$$

As long as this solution is $\notin \mathbb{Z}$, f is injective.

 \Rightarrow For f to be injective, b must not be divisible by a in \mathbb{Z} .

$$\Rightarrow f$$
 is injective for $(a \in \mathbb{Z}, b \in \mathbb{Z} \setminus a\mathbb{Z}, c \in \mathbb{Z})$.

2pts