I.1.5 Equivalence relations

Consider a relation \sim on a set X as in ch. 1 §1.3 def. 1, but with the properties

- i) $x \sim x \quad \forall x \in X$ (reflexivity)
- ii) $x \sim y \Rightarrow y \sim x \quad \forall x, y \in X$ (symmetry)
- iii) $(x \sim y \land y \sim z) \Rightarrow x \sim z$ (transitivity)

Such a relation is called an equivalence relation. Which of the following are equivalence relations?

- a) n divides m on \mathbb{N} .
- b) $x \leq y$ on \mathbb{R} .
- c) g is perpendicular to h on the set of straight lines $\{g, h, \ldots\}$ in the cartesian plane.
- d) a equals b modulo n on \mathbb{Z} , with $n \in \mathbb{N}$ fixed.

hint: "a equals b modulo n", or $a = b \mod(n)$, with $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, is defined to be true if a - b is divisible on \mathbb{Z} by n; i.e., if $(a - b)/n \in \mathbb{Z}$.

(3 points)

Solution

- a) No, since it is not symmetric. E.g., $2 \sim 4$, but $4 \nsim 2$.
- b) No, since it is not symmetric. E.g., $2 \le 4$ but $4 \nleq 2$.
- c) No, since it is not reflexive: No line is perpendicular to itself.
- d) Yes.

Proof. i) a - a = 0 is divisible by $n \Rightarrow a = a \mod(n)$

- ii) Let $a = b \mod(n) \Rightarrow \exists k \in \mathbb{Z} : a b = n$ $\Rightarrow b - a = (-k)n \Rightarrow b - a$ is divisible by n $\Rightarrow b = a \mod(n)$
- iii) Let $a = b \mod(n)$ and $b = c \mod(n)$ $\Rightarrow \exists k, \ell \in \mathbb{Z} : a - b = kn \text{ and } b - c = \ell n$ $\Rightarrow a - c = (a - b) + (b - c) = kn + \ell n = (k + \ell)n \text{ with } k + \ell \in \mathbb{Z}$ $\Rightarrow a = c \mod(n)$
- $\Rightarrow a = b \mod(n)$ is an equivalence relation on \mathbb{Z} .

2pts

1pt