I.2.1. Pauli group

The Pauli matrices are complex 2×2 matrices defined as

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad , \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad ,$$

Now consider the set P_1 that consists of the Pauli matrices and their products with the factors -1 and $\pm i$:

$$P_1 = \{\pm \sigma_0, \pm i\sigma_0, \pm \sigma_1, \pm i\sigma_1, \pm \sigma_2, \pm i\sigma_2, \pm \sigma_3, \pm i\sigma_3\}$$

Show that this set of 16 elements forms a (nonabelian) group under matrix multiplication called the Pauli group. It plays an important role in quantum information theory.

(3 points)

Solution

The Pauli matrices obey

	σ_0	σ_1	σ_2	σ_3
σ_0	σ_0	σ_1	σ_2	σ_3
σ_1	σ_1	σ_0	$i\sigma_3$	$-i\sigma_2$
σ_2	σ_2	$-i\sigma_3$	σ_0	$\mathrm{i}\sigma_1$
σ_3	σ_3	$\mathrm{i}\sigma_2$	$-\mathrm{i}\sigma_1$	σ_0

i.e., $\sigma_i \sigma_j$ equals either some σ_k or some σ_k times $\pm i$.

1pt

Now consider P_1 :

	σ_0	$-\sigma_0$	$i\sigma_0$	$-i\sigma_0$	σ_1	$-\sigma_1$	$i\sigma_1$	$-i\sigma_1$	σ_2	$-\sigma_2$	
σ_0	σ_0	$-\sigma_0$	$i\sigma_0$	$-i\sigma_0$	σ_1	$-\sigma_1$	$i\sigma_1$	$-i\sigma_1$	σ_2	$-\sigma_2$	
$-\sigma_0$	$-\sigma_0$	σ_0	$-i\sigma_0$	$i\sigma_0$	$-\sigma_1$	σ_1	$-i\sigma_1$	$i\sigma_1$	$-\sigma_2$	σ_2	
$i\sigma_0$	$i\sigma_0$	$-i\sigma_0$	$-\sigma_0$	σ_0	$i\sigma_1$	$-i\sigma_1$	$-\sigma_1$	σ_1	$i\sigma_2$	$-i\sigma_2$	
$-i\sigma_0$	$-i\sigma_0$	$i\sigma_0$	σ_0	$-\sigma_0$	$-i\sigma_1$	$i\sigma_1$	σ_1	$-\sigma_1$	$-i\sigma_2$	$i\sigma_2$	
σ_1	σ_1	$-\sigma_1$	$i\sigma_1$	$-i\sigma_1$	σ_0						

etc. Even without completing the table, we see that

- (i) The set is closed under matrix multiplication, since $\sigma_i \sigma_j$ is always some σ_k times either 1 or $\pm i$.
- (ii) Matrix multiplication is associative.

1pt

- (iii) σ_0 is the unit element.
- (iv) Each element has an inverse: