## I.4.2. The space of rank-2 tensors

- a) Prove the theorem of ch.1 §4.3: Let V be a vector space V of dimension n over K. Then the space of rank-2 tensors, defined via bilinear forms  $f: V \times V \to K$ , forms a vector space of dimension  $n^2$ .
- b) Consider the space of bilinear forms f on V that is equivalent to the space of rank-2 tensors, and construct a basis of that space.

hint: On the space of tensors, define a suitable addition and multiplication with scalars, and construct a basis of the resulting vector space.

(5 points)

1pt

## Solution

a) We know that the rank-2 tensors are one-to-one correspondent to bilinear forms f(x, y). On the set of bilinear forms, define an addition by

$$(f+g)(x,y) := f(x,y) + g(x,y)$$

This makes the set of forms an additive group. Also define a multiplication with scalars  $\lambda \in K$  by

$$(\lambda f)(x,y) := \lambda f(x,y)$$

This makes the set of forms a K-vector space. On the space of rank-2 tensors  $t, u, \ldots$  this corresponds to defining the tensor t + u as the tensor with coordinates

$$(t+u)_{ij} = t_{ij} + u_{ij} 1pt$$

and the tensor  $\lambda t$  as the one with coordinates

$$(\lambda t)_{ij} = \lambda t_{ij}$$

The space of tensors is now a K-vector space.

Consider the cartesian basis of V, i.e., a set of n vectors  $e_i$  with contravariant coordinates  $(e_i)^k = \delta_i^k$ . Analogously, construct  $n^2$  tensors  $E_{ij}$  with contravariant coordinates

$$(E_{ij})^{kl} = \delta_i^{\ k} \, \delta_j^{\ l}$$

Define a tensor t as a linear combination of the  $E_{ij}$ ,

$$t = \sum_{ij} \tau^{ij} E_{ij}$$

with coefficients  $\tau^{ij} \in K$ . This tensor has coordinates

$$t^{kl} = \sum_{ij} \tau^{ij} \left( E_{ij} \right)^{kl} = \tau^{kl}$$

 $\Rightarrow$  Any rank-2 tensor can be written as a linear combination of the  $E_{ij}$ , with the coordinates  $t^{ij}$  of t as the coefficients:

$$t = \sum_{ij} t^{ij} E_{ij}$$

 $\Rightarrow$  The  $E_{ij}$  span the space.

1pt

Now, in order for t to be the null tensor, all of its coordinates must be zero, so t = 0 implies  $t^{ij} = 0 \ \forall i, j$ .

- $\Rightarrow$  The  $E_{ij}$  are linearly independent.
- $\Rightarrow$  The  $n^2$  rank-2 tensors  $E_{ij}$  form a basis of the space of rank-2 tensors, and hence the space has dimension  $n^2$ .

1pt

b) Let  $f_{ij}$  be the bilinear form that corresponds to the tensor  $E_{ij}$  and evaluate it on a pair of co-basis vectors. Then

$$f_{ij}(e^k, e^l) = (E_{ij})^{kl} = \delta_i^k \delta_j^l$$

For arbitrary  $x, y \in V$  we have

$$f_{ij}(x,y) = x_k y_l f_{ij}(e^k, e^l) = x_k y_l \delta_i^k \delta_j^l = x_i y_j$$

 $\Rightarrow$  The set of  $n^2$  bilinear forms  $f_{ij}$  defined by

$$f_{ij}(x,y) = x_i y_j$$

forms a basis of the space of bilinear forms.

1pt