0.2.4. Functional derivative

Let F[p] be a functional of a real-valued function ¢(z). For simplicity, let 2 € R; the generalization to more
than one dimension is straightforward. We can (sloppily) define the functional derivative of F as
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a) Calculate 6F/dp(x) for the following functionals:
) F= [ dro(a)
ii) F = [dxy?(z)
iii) F = [dz f(e(x)) g(e(x)) where f and g are given functions
iv) F = [dz (¢ (z))? where ¢’ () = dp/dx
hint: Integrate by parts and assume that the boundary terms vanish.

v) F = [dzV(¢'(x)) where V is some given function.

remark: Blindly ignore terms that formally vanish as ¢ — 0 unless you want to find out why the above
definition is very problematic. It does work for operational purposes, though.

b) Consider a Lagrangian density’ £(¢(z),d,¢(x)) and an action’ S = [ d*z £. Show that extremizing
S by requiring 6.5/d¢(x) = 0 with the above definition of the functional derivative leads to the Euler-
Lagrange equations
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Solution
a) 1) 52 = limeso 1 [dy[e(y) +edly —x) —p(y)] = [dyd(y — =) =1

ii) 5255 =lim. o L [ dy [(w(y) +ed(y— )’ - w(y)z} = limeo ¢ [ dy [2ep(y)d(y — 2) + O(¢%)]

= 2¢()
i) 52 = lmeso [ dy[f (p(y) + €6y — 2)] g (p(y) + edly — ) = f((y)) 9(2())]
— Flp@)gle(@)) + f(p())g (p(x)) 1pt

V) 5ot = limeso ¢ [dy [(@’(y) +egt oy — x))2 - (@’(y))ﬂ =2 [dy¢'(y) 4 oy —2) = —2¢"(x)

V) 52 =limeo L[ dy [V (&) + e oy — o)) = V(' )]
=lime,o < [dy [eV’(cp'(y))d% Sy —z) + 0(62)} =-V"(¢' () ¢"(2) 1pt

b) 0= 545 J d*y L (e(y). ue(y))
=limeso ¢ [d'y [L(p(y) + ey — 2),0up(y) + €d 5( =) = L (), Oup(y))]
= lim, 0 L [ dly [eé(y —2) 525 + € (0,0(y — 7)) 527 + Ole )]
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