
0.2.4. Functional derivative

Let F [ϕ] be a functional of a real-valued function ϕ(x). For simplicity, let x ∈ R; the generalization to more
than one dimension is straightforward. We can (sloppily) define the functional derivative of F as

δF

δϕ(x)
:= lim

ε→0

1

ε

(
F [ϕ(y) + εδ(y − x)]− F [ϕ(y)]

)
a) Calculate δF/δϕ(x) for the following functionals:

i) F =
∫
dxϕ(x)

ii) F =
∫
dxϕ2(x)

iii) F =
∫
dx f(ϕ(x)) g(ϕ(x)) where f and g are given functions

iv) F =
∫
dx (ϕ′(x))2 where ϕ′(x) = dϕ/dx

hint: Integrate by parts and assume that the boundary terms vanish.

v) F =
∫
dxV (ϕ′(x)) where V is some given function.

remark: Blindly ignore terms that formally vanish as ε→ 0 unless you want to find out why the above
definition is very problematic. It does work for operational purposes, though.

b) Consider a Lagrangian density’ L(ϕ(x), ∂µϕ(x)) and an action’ S =
∫
d4xL. Show that extremizing

S by requiring δS/δϕ(x) ≡ 0 with the above definition of the functional derivative leads to the Euler-
Lagrange equations

∂µ
∂L

∂(∂µϕ)
=
∂L
∂ϕ

(3 points)

Solution

a) i) δF
δϕ(x) = limε→0

1
ε

∫
dy [ϕ(y) + εδ(y − x)− ϕ(y)] =

∫
dy δ(y − x) = 1

ii) δF
δϕ(x) = limε→0

1
ε

∫
dy
[
(ϕ(y) + εδ(y − x))

2 − ϕ(y)2
]

= limε→0
1
ε

∫
dy
[
2εϕ(y)δ(y − x) +O(ε2)

]
= 2ϕ(x)

iii) δF
δϕ(x) = limε→0

1
ε

∫
dy [f (ϕ(y) + εδ(y − x))] [g (ϕ(y) + εδ(y − x))− f(ϕ(y)) g(ϕ(y))]

= f ′(ϕ(x))g(ϕ(x)) + f(ϕ(x))g′(ϕ(x)) 1pt

iv) δF
δϕ(x) = limε→0

1
ε

∫
dy

[(
ϕ′(y) + ε ddy δ(y − x)

)2
− (ϕ′(y))

2

]
= 2

∫
dy ϕ′(y) ddy δ(y − x) = −2ϕ′′(x)

v) δF
δϕ(x) = limε→0

1
ε

∫
dy
[
V
(
ϕ′(y) + ε ddy δ(y − x)

)
− V (ϕ′(y))

]
= limε→0

1
ε

∫
dy
[
εV ′(ϕ′(y)) ddy δ(y − x) +O(ε2)

]
= −V ′′(ϕ′(x))ϕ′′(x) 1pt

b) 0 = δ
δϕ(x)

∫
d4yL (ϕ(y), ∂µϕ(y))

= limε→0
1
ε

∫
d4y [L (ϕ(y) + εδ(y − x), ∂µϕ(y) + ε∂µδ(y − x))− L (ϕ(y), ∂µϕ(y))]

= limε→0
1
ε

∫
d4y

[
εδ(y − x) ∂L

∂ϕ(y) + ε (∂µδ(y − x)) ∂L
∂(∂µϕ(y))

+O(ε2)
]

= ∂L
∂ϕ(x) − ∂µ

∂L
∂(∂µϕ(x))

EL X 1pt
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