

0.2.4. Functional derivative

Let $F[\varphi]$ be a functional of a real-valued function $\varphi(x)$. For simplicity, let $x \in \mathbb{R}$; the generalization to more than one dimension is straightforward. We can (sloppily) define the *functional derivative* of F as

$$\frac{\delta F}{\delta \varphi(x)} := \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \left(F[\varphi(y) + \epsilon \delta(y - x)] - F[\varphi(y)] \right)$$

a) Calculate $\delta F / \delta \varphi(x)$ for the following functionals:

- i) $F = \int dx \varphi(x)$
- ii) $F = \int dx \varphi^2(x)$
- iii) $F = \int dx f(\varphi(x)) g(\varphi(x))$ where f and g are given functions
- iv) $F = \int dx (\varphi'(x))^2$ where $\varphi'(x) = d\varphi/dx$

hint: Integrate by parts and assume that the boundary terms vanish.

- v) $F = \int dx V(\varphi'(x))$ where V is some given function.

remark: Blindly ignore terms that formally vanish as $\epsilon \rightarrow 0$ unless you want to find out why the above definition is very problematic. It does work for operational purposes, though.

- b) Consider a Lagrangian density' $\mathcal{L}(\varphi(x), \partial_\mu \varphi(x))$ and an action' $S = \int d^4x \mathcal{L}$. Show that extremizing S by requiring $\delta S / \delta \varphi(x) \equiv 0$ with the above definition of the functional derivative leads to the Euler-Lagrange equations

$$\partial_\mu \frac{\partial \mathcal{L}}{\partial(\partial_\mu \varphi)} = \frac{\partial \mathcal{L}}{\partial \varphi}$$

(3 points)

Solution

a)

- i) $\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int dy [\varphi(y) + \epsilon \delta(y - x) - \varphi(y)] = \int dy \delta(y - x) = 1$
- ii) $\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int dy \left[(\varphi(y) + \epsilon \delta(y - x))^2 - \varphi(y)^2 \right] = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int dy [2\epsilon \varphi(y) \delta(y - x) + O(\epsilon^2)] = 2\varphi(x)$
- iii) $\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int dy [f(\varphi(y) + \epsilon \delta(y - x))] [g(\varphi(y) + \epsilon \delta(y - x)) - f(\varphi(y)) g(\varphi(y))] = f'(\varphi(x)) g(\varphi(x)) + f(\varphi(x)) g'(\varphi(x))$ 1pt
- iv) $\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int dy \left[(\varphi'(y) + \epsilon \frac{d}{dy} \delta(y - x))^2 - (\varphi'(y))^2 \right] = 2 \int dy \varphi'(y) \frac{d}{dy} \delta(y - x) = -2\varphi''(x)$
- v) $\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int dy \left[V(\varphi'(y) + \epsilon \frac{d}{dy} \delta(y - x)) - V(\varphi'(y)) \right] = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int dy \left[\epsilon V'(\varphi'(y)) \frac{d}{dy} \delta(y - x) + O(\epsilon^2) \right] = -V''(\varphi'(x)) \varphi''(x)$ 1pt

b)

$$\begin{aligned} 0 &= \frac{\delta}{\delta \varphi(x)} \int d^4y \mathcal{L}(\varphi(y), \partial_\mu \varphi(y)) \\ &= \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int d^4y [\mathcal{L}(\varphi(y) + \epsilon \delta(y - x), \partial_\mu \varphi(y) + \epsilon \partial_\mu \delta(y - x)) - \mathcal{L}(\varphi(y), \partial_\mu \varphi(y))] \\ &= \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int d^4y \left[\epsilon \delta(y - x) \frac{\partial \mathcal{L}}{\partial \varphi(y)} + \epsilon (\partial_\mu \delta(y - x)) \frac{\partial \mathcal{L}}{\partial(\partial_\mu \varphi(y))} + O(\epsilon^2) \right] \\ &= \frac{\partial \mathcal{L}}{\partial \varphi(x)} - \partial_\mu \frac{\partial \mathcal{L}}{\partial(\partial_\mu \varphi(x))} \quad \text{EL} \quad \checkmark \end{aligned}$$