

1.1.2. Ginzburg-Landau theory

Ginzburg and Landau postulated that superconductivity can be described by an action (which is NOT Lorentz invariant)

$$S_{\text{GL}} = \int d\mathbf{x} \left[r |\phi(\mathbf{x})|^2 + c |[\nabla - iq\mathbf{A}(\mathbf{x})]\phi(\mathbf{x})|^2 + u |\phi(\mathbf{x})|^4 + \frac{1}{16\pi\mu} F_{ij}(\mathbf{x}) F^{ij}(\mathbf{x}) \right]$$

Here $\mathbf{x} \in \mathbb{R}^3$, and $\phi(\mathbf{x})$ is a complex-valued field that describes the superconducting matter, \mathbf{A} is the Euclidian vector field that comprises the spatial components of the 4-vector $A^\mu = (A^0, \mathbf{A})$, and $F_{ij} = \partial_i A_j - \partial_j A_i$ ($i, j = 1, 2, 3$). μ and q are coupling constants that characterize the vector potential and its coupling to the matter, and r , c and u are further parameters of the theory.

- a) Find the coupled differential equations (known as Ginzburg-Landau equations) whose solutions extremize this action by considering the functional derivatives of S_{GL} with respect to all independent fields. (See Problem 0.2.4. You may want to double check against what you get from the Landau-Lifshitz method we used in class.)
- b) Show that this theory is invariant under gauge transformations $\phi(x) \rightarrow \phi(\mathbf{x}) e^{iq\lambda(\mathbf{x})}$, $\mathbf{A}(\mathbf{x}) \rightarrow \mathbf{A}(\mathbf{x}) + \nabla\lambda(\mathbf{x})$.
- c) Show that the Lorentz-invariant Lagrangian density for a massive scalar field, Problem 0.2.5, can be made gauge invariant by coupling $\phi(x)$ to the electromagnetic vector potential $A^\mu(x)$.

hint: Replace the 4-gradient ∂_μ by $D_\mu = \partial_\mu - iqA_\mu$ and add the Maxwell Lagrangian.

note: If we had never heard of the electromagnetic potential, insisting on gauge invariance would force us to invent it!

(7 points)

1.1.2.)

$$S_{GL} = \int d\vec{x} \left[r |\phi(\vec{x})|^2 + c |(\vec{\nabla} - i\vec{g} \vec{A}(\vec{x}))\phi(\vec{x})|^2 + u |\phi(\vec{x})|^4 + \frac{1}{16\pi} F_{ij}(\vec{x}) F^{ij}(\vec{x}) \right]$$

$$\text{c) } 0 = \frac{\delta S_{GL}}{\delta \phi(\vec{x})} = -r \phi(\vec{x}) + 2u\phi(\vec{x})|\phi(\vec{x})|^2 + c \frac{\delta}{\delta \phi(\vec{x})} \int d\vec{x} (\vec{\nabla} - i\vec{A})\phi(\vec{x}) (\vec{\nabla} - i\vec{A})\phi(\vec{x})$$

$$\begin{aligned} & \cdot r\phi + 2u\phi|\phi|^2 - c\vec{\nabla}(\vec{\nabla} - i\vec{A})\phi + i\vec{g}\vec{A}(\vec{\nabla} - i\vec{A})\phi \\ (1) \quad & = (r\phi + 2u\phi|\phi|^2 - c(\vec{\nabla} - i\vec{g}\vec{A})^2\phi) \end{aligned}$$

$$0 = \frac{\delta S_{GL}}{\delta \vec{A}(\vec{x})} = c(-i\vec{g})\phi(\vec{x}) (\vec{\nabla} + i\vec{g}\vec{A})\phi^* + c i\vec{g}((\vec{\nabla} - i\vec{g}\vec{A})\phi)\phi^*$$

$$+ \frac{1}{16\pi} \frac{\delta}{\delta \vec{A}(\vec{x})} \int d\vec{y} F_{ij}(\vec{y}) F^{ij}(\vec{y})$$

$$F_{ij} F^{ij} = (\partial_i A_j - \partial_j A_i)(\partial^i A^j - \partial^j A^i) = 2 \epsilon^{ijk} \epsilon_{klm} \partial_i A_j \partial^l A^m$$

$$= 2(\vec{\nabla} \times \vec{A})^2$$

$$\rightarrow \frac{\delta}{\delta \vec{A}(\vec{x})} \int d\vec{y} F_{ij} F^{ij} = -\frac{\delta}{\delta \vec{A}(\vec{x})} \int d\vec{y} \vec{A}(\vec{y}) \cdot (\vec{\nabla} \times (\vec{\nabla} \times \vec{A}(\vec{y})))$$

$$= -2 \vec{\nabla} \times (\vec{\nabla} \times \vec{A}(\vec{x}))$$

$$= c i\vec{g} \phi^* (\vec{\nabla} - i\vec{g}\vec{A})\phi + \text{c.c.} - \frac{1}{4\pi} \vec{\nabla} \times (\vec{\nabla} \times \vec{A}(\vec{x}))$$

⇒

$$-c [\vec{\nabla} - i\vec{g}\vec{A}(\vec{x})]^2 \phi(\vec{x}) + [r + 2u|\phi(\vec{x})|^2]\phi(\vec{x}) = 0$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}(\vec{x})) = 4\pi \mu_0 c i\vec{g} \phi^* (\vec{\nabla} - i\vec{g}\vec{A}(\vec{x})) \phi(\vec{x}) + \text{c.c.}$$

GL eqs.

b) Let $\phi(\bar{x}) \rightarrow \phi(\bar{x}) e^{ig\lambda(\bar{x})}$, $\tilde{A}(\bar{x}) \rightarrow \tilde{A}(\bar{x}) + \tilde{\nabla}\lambda(\bar{x})$

$$\rightarrow |\phi(\bar{x})|^2 \rightarrow |\phi(\bar{x})|^2$$

$$\text{ed } \underline{F_{ij}(\bar{x})} = \partial_i A_j - \partial_j A_i \rightarrow \partial_i (A_j + \partial_j \lambda) - \partial_j (A_i + \partial_i \lambda) = \underline{F_{ij}(\bar{x})}$$

①

Find \mathcal{L}_1

$$\begin{aligned} (\tilde{\nabla} - ig\tilde{A})\phi &\rightarrow (\tilde{\nabla} - ig\tilde{A} - ig\tilde{\nabla}\lambda)\phi e^{ig\lambda} = \\ &= (\tilde{\nabla}\phi)e^{ig\lambda} + ig(\tilde{\nabla}\lambda)\phi e^{ig\lambda} - ig\tilde{A}\phi e^{ig\lambda} - ig(\tilde{\nabla}\lambda)\phi e^{ig\lambda} \\ &= e^{ig\lambda}(\tilde{\nabla} - ig\tilde{A})\phi \end{aligned}$$

$$\rightarrow |(\tilde{\nabla} - ig\tilde{A})\phi|^2 \rightarrow |(\tilde{\nabla} - ig\tilde{A})\phi|^2$$

②

 \mathcal{L}_{GL} is gauge invariant

c) Modify \mathcal{L} from Problem 0.2.5 b) to read

$$\boxed{\mathcal{L} = (\partial_\mu \phi(x))(\partial^\mu \phi(x))^* - m^2 |\phi(x)|^2 - \frac{1}{16\pi} F_{\mu\nu}(x) F^{\mu\nu}(x)} \quad (*)$$

$$\text{wth } \partial_\mu = \partial_\mu - igA_\mu$$

Let $\phi(x) \rightarrow \phi(x) e^{ig\lambda(x)}$, $A^\mu(x) \rightarrow A^\mu(x) + \partial^\mu \lambda(x)$

$$\rightarrow |\phi|^2 \rightarrow |\phi|^2 \text{ ed } F_{\mu\nu} F^{\mu\nu} \rightarrow F_{\mu\nu} F^{\mu\nu}$$

$$\partial_\mu \phi \rightarrow (\partial_\mu - igA_\mu - ig\partial_\mu \lambda)\phi e^{ig\lambda}$$

$$= e^{ig\lambda}(\partial_\mu + ig\partial_\mu \lambda - igA_\mu - ig\partial_\mu \lambda)\phi = e^{ig\lambda} \partial_\mu \phi$$

$$\rightarrow (\partial_\mu \phi)(\partial^\mu \phi)^* \rightarrow (\partial_\mu \phi)(\partial^\mu \phi^*)$$

①

 $(*)$ is gauge invariant