Greening of the Earth pushed way back in time

EUGENE, Ore. — (July 22, 2013) — Conventional scientific wisdom has it that plants and other creatures have only lived on land for about 500 million years, and that landscapes of the early Earth were as barren as Mars.

Interpretive image of Diskagma buttoniiA new study, led by geologist Gregory J. Retallack of the University of Oregon, now has presented evidence for life on land that is four times as old — at 2.2 billion years ago and almost half way back to the inception of the planet.

That evidence, which is detailed in the September issue of the journal Precambrian Research, involves fossils the size of match heads and connected into bunches by threads in the surface of an ancient soil from South Africa. They have been named Diskagma buttonii, meaning "disc-shaped fragments of Andy Button," but it is unsure what the fossils were, the authors say.

"They certainly were not plants or animals, but something rather more simple," said Retallack, professor of geological sciences and co-director of paleontological collections at the UO's Museum of Natural and Cultural History. The fossils, he added, most resemble modern soil organisms called Geosiphon, a fungus with a central cavity filled with symbiotic cyanobacteria.

Greg Retallack"There is independent evidence for cyanobacteria, but not fungi, of the same geological age, and these new fossils set a new and earlier benchmark for the greening of the land," he said. "This gains added significance because fossil soils hosting the fossils have long been taken as evidence for a marked rise in the amount of oxygen in the atmosphere at about 2.4 billion to 2.2 billion years ago, widely called the Great Oxidation Event."

By modern standards, in which Earth's air is now 21 percent oxygen, this early rise was modest, to about 5 percent oxygen, but it represented a rise from vanishingly low oxygen levels earlier in geological time.

Demonstrating that Diskagma are fossils, Retallack said, was a technical triumph because they were too big to be completely seen in a standard microscopic slide and within rock that was too dark to see through in slabs. The samples were imaged using powerful X-rays of a cyclotron, a particle accelerator, at the Lawrence Berkeley National Laboratory in California.

The images enabled a three-dimensional restoration of the fossils' form: odd little hollow urn-shaped structures with a terminal cup and basal attachment tube. "At last we have an idea of what life on land looked like in the Precambrian," Retallack said. "Perhaps with this search image in mind, we can find more and different kinds of fossils in ancient soils.”

In their conclusion, the researchers noted that their newly named fossil Diskagma is comparable in morphology and size to Thucomyces lichenoides, a fossil dating to 2.8 billion years ago and also found in South Africa, but its composition, including interior structure and trace elements, is significantly different.

Diskagma also holds some similarities to three living organisms, which were illustrated microscopically in the study: the slime mold Leocarpus fragilis as found in Oregon's Three Sisters Wilderness; the lichen Cladonia ecmocyna gathered near Fishtrap Lake in Montana; and the fungus Geosiphon pyriformis from near Darmstadt, Germany.

The new fossil, the authors concluded, is a promising candidate for the oldest known eukaryote — an organism with cells that contain complex structures, including a nucleus, within membranes.

The three co-authors with Retallack on the study were: Evelyn S. Krull of the Land and Water Division of the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia's national science agency; Glenn D. Thackray, professor of geology at Idaho State University; and Dula Parkinson of the Lawrence Berkeley National Laboratory.

About the University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contact: Jim Barlow, director of science and research communications, 541-346-3481, jebarlow@uoregon.edu

Source: Gregory J. Retallack, professor of geological sciences, 541-346-4558, gregr@uoregon.edu

Additional Links:
UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_Research

More UO Science/Research News: http://uoresearch.uoregon.edu

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.