--- title: "Regression and Other Stories: Arsenic" author: "Andrew Gelman, Jennifer Hill, Aki Vehtari" date: "`r format(Sys.Date())`" output: html_document: theme: readable toc: true toc_depth: 2 toc_float: true code_download: true --- Building a logistic regression model: wells in Bangladesh. See Chapter 13 in Regression and Other Stories. This version uses algorithm='optimizing', which finds the posterior mode, computes Hessian and uses a normal distribution approximation of the posterior. This can work well for non-hierarchical generalized linear models when the number of observations is much higher than the number of covariates. ------------- ```{r setup, include=FALSE} knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA) # switch this to TRUE to save figures in separate files savefigs <- FALSE ``` #### Load packages ```{r } library("rprojroot") root<-has_file(".ROS-Examples-root")$make_fix_file() library("rstanarm") library("loo") invlogit <- plogis ``` #### Load data ```{r } wells <- read.csv(root("Arsenic/data","wells.csv")) wells$y <- wells$switch n <- nrow(wells) ``` ## Null model #### Log-score for coin flipping ```{r } prob <- 0.5 round(log(prob)*sum(wells$y) + log(1-prob)*sum(1-wells$y),1) ``` #### Log-score for intercept model ```{r } round(prob <- mean(wells$y),2) round(log(prob)*sum(wells$y) + log(1-prob)*sum(1-wells$y),1) ``` ## A single predictor #### Fit a model using distance to the nearest safe well ```{r results='hide'} fit_1 <- stan_glm(y ~ dist, family = binomial(link = "logit"), data=wells, algorithm='optimizing') ``` ```{r } print(fit_1, digits=3) summary(fit_1, digits=3) ``` #### LOO log score ```{r } (loo1 <- loo(fit_1)) ``` #### Histogram of distances ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.distances.bnew.ps"), height=3, width=4, horizontal=TRUE) ``` ```{r } hist(wells$dist, breaks=seq(0,10+max(wells$dist),10), freq=TRUE, xlab="Distance (in meters) to nearest safe well", ylab="", main="", mgp=c(2,.5,0)) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` #### Scale distance in meters to distance in 100 meters ```{r } wells$dist100 <- wells$dist/100 ``` #### Fit a model using scaled distance to the nearest safe well ```{r results='hide'} fit_2 <- stan_glm(y ~ dist100, family = binomial(link = "logit"), data=wells, algorithm='optimizing') ``` ```{r } print(fit_2, digits=2) summary(fit_2, digits=2) ``` #### LOO log score ```{r } (loo2 <- loo(fit_2, save_psis = TRUE)) ``` #### Plot model fit ```{r } jitter_binary <- function(a, jitt=.05){ a + (1-2*a)*runif(length(a),0,jitt) } ``` ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.logitfit.1new.a.ps"), height=3.5, width=4, horizontal=TRUE) ``` ```{r } plot(c(0,max(wells$dist, na.rm=TRUE)*1.02), c(0,1), xlab="Distance (in meters) to nearest safe well", ylab="Pr (switching)", type="n", xaxs="i", yaxs="i", mgp=c(2,.5,0)) curve(invlogit(coef(fit_1)[1]+coef(fit_1)[2]*x), lwd=1, add=TRUE) points(wells$dist, jitter_binary(wells$y), pch=20, cex=.1) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` #### Plot uncertainty in the estimated coefficients ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.logitfit.scatterplot.ps"), height=3.5, width=3.5, horizontal=TRUE) ``` ```{r } sims <- as.matrix(fit_2) par(pty="s") plot(sims[1:500,1], sims[1:500,2], xlim=c(.4,.8), ylim=c(-1,0), xlab=expression(beta[0]), ylab=expression(beta[1]), mgp=c(1.5,.5,0), pch=20, cex=.5, xaxt="n", yaxt="n") axis(1, seq(.4,.8,.2), mgp=c(1.5,.5,0)) axis(2, seq(-1,0,.5), mgp=c(1.5,.5,0)) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` #### Plot uncertainty in the estimated predictions ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.logitfit.1new.b.ps"), height=3.5, width=4, horizontal=TRUE) ``` ```{r } plot(c(0,max(wells$dist, na.rm=T)*1.02), c(0,1), xlab="Distance (in meters) to nearest safe well", ylab="Pr (switching)", type="n", xaxs="i", yaxs="i", mgp=c(2,.5,0)) for (j in 1:20) { curve (invlogit(sims[j,1]+sims[j,2]*x/100), lwd=.5, col="darkgray", add=TRUE) } curve(invlogit(coef(fit_2)[1]+coef(fit_2)[2]*x/100), lwd=1, add=T) points(wells$dist, jitter_binary(wells$y), pch=20, cex=.1) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` ## Two predictors #### Histogram of arsenic levels ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.levels.a.ps"), height=3, width=4, horizontal=TRUE) ``` ```{r } hist(wells$arsenic, breaks=seq(0,.25+max(wells$arsenic),.25), freq=TRUE, xlab="Arsenic concentration in well water", ylab="", main="", mgp=c(2,.5,0)) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` #### Fit a model using scaled distance and arsenic level ```{r results='hide'} fit_3 <- stan_glm(y ~ dist100 + arsenic, family = binomial(link = "logit"), data=wells, algorithm='optimizing') ``` ```{r } print(fit_3, digits=2) summary(fit_3, digits=2) ``` #### LOO log score ```{r } (loo3 <- loo(fit_3, save_psis = TRUE)) ``` #### Compare models ```{r } loo_compare(loo2, loo3) ``` #### Average improvement in LOO predictive probabilities
from dist100 to dist100 + arsenic ```{r } pred2 <- loo_predict(fit_2, psis_object = loo2$psis_object)$value pred3 <- loo_predict(fit_3, psis_object = loo3$psis_object)$value round(mean(c(pred3[wells$y==1]-pred2[wells$y==1],pred2[wells$y==0]-pred3[wells$y==0])),3) ``` #### Plot model fits ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.2variables.a.ps"), height=3.5, width=4, horizontal=TRUE) ``` ```{r } plot(c(0,max(wells$dist,na.rm=T)*1.02), c(0,1), xlab="Distance (in meters) to nearest safe well", ylab="Pr (switching)", type="n", xaxs="i", yaxs="i", mgp=c(2,.5,0)) points(wells$dist, jitter_binary(wells$y), pch=20, cex=.1) curve(invlogit(coef(fit_3)[1]+coef(fit_3)[2]*x/100+coef(fit_3)[3]*.50), lwd=.5, add=T) curve(invlogit(coef(fit_3)[1]+coef(fit_3)[2]*x/100+coef(fit_3)[3]*1.00), lwd=.5, add=T) text(50, .27, "if As = 0.5", adj=0, cex=.8) text(75, .50, "if As = 1.0", adj=0, cex=.8) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.2variables.b.ps"), height=3.5, width=4, horizontal=TRUE) ``` ```{r } plot(c(0,max(wells$arsenic,na.rm=T)*1.02), c(0,1), xlab="Arsenic concentration in well water", ylab="Pr (switching)", type="n", xaxs="i", yaxs="i", mgp=c(2,.5,0)) points(wells$arsenic, jitter_binary(wells$y), pch=20, cex=.1) curve(invlogit(coef(fit_3)[1]+coef(fit_3)[2]*0+coef(fit_3)[3]*x), from=0.5, lwd=.5, add=T) curve(invlogit(coef(fit_3)[1]+coef(fit_3)[2]*0.5+coef(fit_3)[3]*x), from=0.5, lwd=.5, add=T) text(.5, .78, "if dist = 0", adj=0, cex=.8) text(2, .6, "if dist = 50", adj=0, cex=.8) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` ## Interaction #### Fit a model using scaled distance, arsenic level, and an interaction ```{r results='hide'} fit_4 <- stan_glm(y ~ dist100 + arsenic + dist100:arsenic, family = binomial(link="logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_4, digits=2) summary(fit_4, digits=2) ``` #### LOO log score ```{r } (loo4 <- loo(fit_4)) ``` #### Compare models ```{r } loo_compare(loo3, loo4) ``` #### Centering the input variables ```{r } wells$c_dist100 <- wells$dist100 - mean(wells$dist100) wells$c_arsenic <- wells$arsenic - mean(wells$arsenic) fit_5 <- stan_glm(y ~ c_dist100 + c_arsenic + c_dist100:c_arsenic, family = binomial(link="logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_5, digits=2) summary(fit_5, digits=2) ``` #### Plot model fits ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.interact.a.ps"), height=3.5, width=4, horizontal=TRUE) ``` ```{r } plot(c(0,max(wells$dist,na.rm=T)*1.02), c(0,1), xlab="Distance (in meters) to nearest safe well", ylab="Pr (switching)", type="n", xaxs="i", yaxs="i", mgp=c(2,.5,0)) points(wells$dist, jitter_binary(wells$y), pch=20, cex=.1) curve(invlogit(coef(fit_4)[1]+coef(fit_4)[2]*x/100+coef(fit_4)[3]*.50+coef(fit_4)[4]*x/100*.50), lwd=.5, add=T) curve(invlogit(coef(fit_4)[1]+coef(fit_4)[2]*x/100+coef(fit_4)[3]*1.00+coef(fit_4)[4]*x/100*1.00), lwd=.5, add=T) text (50, .29, "if As = 0.5", adj=0, cex=.8) text (75, .50, "if As = 1.0", adj=0, cex=.8) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` ```{r eval=FALSE, include=FALSE} if (savefigs) postscript(root("Arsenic/figs","arsenic.interact.b.ps"), height=3.5, width=4, horizontal=TRUE) ``` ```{r } plot(c(0,max(wells$arsenic,na.rm=T)*1.02), c(0,1), xlab="Arsenic concentration in well water", ylab="Pr (switching)", type="n", xaxs="i", yaxs="i", mgp=c(2,.5,0)) points(wells$arsenic, jitter_binary(wells$y), pch=20, cex=.1) curve(invlogit(coef(fit_4)[1]+coef(fit_4)[2]*0+coef(fit_4)[3]*x+coef(fit_4)[4]*0*x), from=0.5, lwd=.5, add=T) curve(invlogit(coef(fit_4)[1]+coef(fit_4)[2]*0.5+coef(fit_4)[3]*x+coef(fit_4)[4]*0.5*x), from=0.5, lwd=.5, add=T) text (.5, .78, "if dist = 0", adj=0, cex=.8) text (2, .6, "if dist = 50", adj=0, cex=.8) ``` ```{r eval=FALSE, include=FALSE} if (savefigs) dev.off() ``` ## More predictors #### Adding social predictors ```{r results='hide'} fit_6 <- stan_glm(y ~ dist100 + arsenic + educ4 + assoc, family = binomial(link="logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_6, digits=2) summary(fit_6, digits=2) ``` #### LOO log score ```{r } (loo6 <- loo(fit_6)) ``` #### Compare models ```{r } loo_compare(loo4, loo6) ``` #### Remove assoc ```{r results='hide'} fit_7 <- stan_glm(y ~ dist100 + arsenic + educ4, family = binomial(link="logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_7, digits=2) summary(fit_7, digits=2) ``` #### LOO log score ```{r } (loo7 <- loo(fit_7)) ``` #### Compare models ```{r } loo_compare(loo4, loo7) loo_compare(loo6, loo7) ``` #### Add interactions with education ```{r results='hide'} wells$c_educ4 <- wells$educ4 - mean(wells$educ4) fit_8 <- stan_glm(y ~ c_dist100 + c_arsenic + c_educ4 + c_dist100:c_educ4 + c_arsenic:c_educ4, family = binomial(link="logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_8, digits=2) summary(fit_8, digits=2) ``` #### LOO log score ```{r } (loo8 <- loo(fit_8, save_psis=TRUE)) ``` #### Compare models ```{r } loo_compare(loo3, loo8) loo_compare(loo7, loo8) ``` #### Average improvement in LOO predictive probabilities
from dist100 + arsenic to dist100 + arsenic + educ4 + dist100:educ4 + arsenic:educ4 ```{r } pred8 <- loo_predict(fit_8, psis_object = loo8$psis_object)$value round(mean(c(pred8[wells$y==1]-pred3[wells$y==1],pred3[wells$y==0]-pred8[wells$y==0])),3) ``` ## Transformation of variable #### Fit a model using scaled distance and log arsenic level ```{r } wells$log_arsenic <- log(wells$arsenic) ``` ```{r results='hide'} fit_3a <- stan_glm(y ~ dist100 + log_arsenic, family = binomial(link = "logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_3a, digits=2) summary(fit_3a, digits=2) ``` #### LOO log score ```{r } (loo3a <- loo(fit_3a)) ``` #### Compare models ```{r } loo_compare(loo3, loo3a) ``` #### Fit a model using scaled distance, log arsenic level, and an interaction
```{r results='hide'} fit_4a <- stan_glm(y ~ dist100 + log_arsenic + dist100:log_arsenic, family = binomial(link = "logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_4a, digits=2) summary(fit_4a, digits=2) ``` #### LOO log score ```{r } (loo4a <- loo(fit_4a)) ``` #### Compare models ```{r } loo_compare(loo3a, loo4a) ``` #### Add interactions with education ```{r } wells$c_log_arsenic <- wells$log_arsenic - mean(wells$log_arsenic) ``` ```{r results='hide'} fit_8a <- stan_glm(y ~ c_dist100 + c_log_arsenic + c_educ4 + c_dist100:c_educ4 + c_log_arsenic:c_educ4, family = binomial(link="logit"), data = wells, algorithm='optimizing') ``` ```{r } print(fit_8a, digits=2) summary(fit_8a, digits=2) ``` #### LOO log score ```{r } (loo8a <- loo(fit_8a, save_psis=TRUE)) ``` #### Compare models ```{r } loo_compare(loo8, loo8a) ```