#' --- #' title: "Regression and Other Stories: Robit" #' author: "Andrew Gelman, Jennifer Hill, Aki Vehtari" #' date: "`r format(Sys.Date())`" #' output: #' html_document: #' theme: readable #' toc: true #' toc_depth: 2 #' toc_float: true #' code_download: true #' --- #' Comparison of robit and logit models for binary data. See Chapter #' 15 in Regression and Other Stories. #' #' ------------- #' #+ setup, include=FALSE knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA) # switch this to TRUE to save figures in separate files savefigs <- FALSE #' #### Load packages library("rprojroot") root<-has_file(".ROS-Examples-root")$make_fix_file() library("cmdstanr") options(mc.cores = 1) library("ggdist") logit <- qlogis invlogit <- plogis #' ## Generate data from logit model # set the random seed to get reproducible results # change the seed to experiment with variation due to random noise set.seed(1234) N <- 50 x <- runif(N, -9, 9) a <- 0 b <- 0.8 p <- invlogit(a + b*x) y <- rbinom(N, 1, p) df <- 4 data_1 <- list(N=N, x=x, y=y, df=df) #' ## Fit logit and probit models using the simulated data #' #' #### Show Stan code for the models writeLines(readLines(root("Robit","logit.stan"))) writeLines(readLines(root("Robit","robit.stan"))) #' #### Compile models logit_model <- cmdstan_model("logit.stan") robit_model <- cmdstan_model("robit.stan") #' #### Sample and compute posterior medians fit_logit_1 <- logit_model$sample(data=data_1, refresh=0) print(fit_logit_1) a_hat_logit_1 <- median(fit_logit_1$draws("a")) b_hat_logit_1 <- median(fit_logit_1$draws("b")) #' #### Sample and compute posterior medians fit_robit_1 <- robit_model$sample(data=data_1, refresh=0) print(fit_robit_1) a_hat_robit_1 <- median(fit_robit_1$draws("a")) b_hat_robit_1 <- median(fit_robit_1$draws("b")) #' #### Plot if (savefigs) pdf("logistic2b.pdf", height=4, width=6) #+ par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01) plot(data_1$x, data_1$y, yaxt="n", main="Data from a logistic regression", xlab="x", ylab="y") axis(2, c(0,1)) curve(invlogit(a_hat_logit_1 + b_hat_logit_1*x), add=TRUE, lty=2) curve(pstudent_t(a_hat_robit_1 + b_hat_robit_1*x, data_1$df, 0, sqrt((data_1$df-2)/data_1$df)), add=TRUE, lty=1) legend (1, .3, c("fitted logistic regression", "fitted robit regression"), lty=c(2,1), cex=.8) #+ eval=FALSE, include=FALSE if (savefigs) dev.off() #' ## Add an outlier by flipping the class of one observation low_value <- (1:N)[x==sort(x)[4]] data_2 <- data_1 data_2$y[low_value] <- 1 #' #### Sample and compute posterior medians fit_logit_2 <- logit_model$sample(data=data_2, refresh=0) print(fit_logit_2) a_hat_logit_2 <- median(fit_logit_2$draws("a")) b_hat_logit_2 <- median(fit_logit_2$draws("b")) #' #### Sample and compute posterior medians fit_robit_2 <- robit_model$sample(data=data_2, refresh=0) print(fit_robit_2) a_hat_robit_2 <- median(fit_robit_2$draws("a")) b_hat_robit_2 <- median(fit_robit_2$draws("b")) #' Plot if (savefigs) pdf("logistic2a.pdf", height=4, width=6) #+ par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01) plot(data_2$x, data_2$y, yaxt="n", main="Contaminated data", xlab="x", ylab="y") axis(2, c(0,1)) curve(invlogit(a_hat_logit_2 + b_hat_logit_2*x), add=TRUE, lty=2) curve(pstudent_t(a_hat_robit_2 + b_hat_robit_2*x, data_2$df, 0, sqrt((data_2$df-2)/data_2$df)), add=TRUE, lty=1) legend (1, .3, c("fitted logistic regression", "fitted robit regression"), lty=c(2,1), cex=.8) #+ eval=FALSE, include=FALSE if (savefigs) dev.off()