$+20 \mathrm{~m}$
Rocket Launch
Using trig, we est. max height

T These are notes? Write-up starts next page

Figure 1
Height of simulated rocket over time

This figure was generated with $P_{0}=3 \times 10^{5} \mathrm{~Pa}$, $V_{t}=$ total volume of racket $=0.002 \mathrm{~m}^{3}$
$V_{w}=$ volume of water, inititial $=0,001 \mathrm{~m}^{3}$ $d t=$ time between steps $=0,001 \mathrm{~s}$ diameter of nozzle, used to calculate $A_{e}=0.02 \mathrm{~m}$ mrocket = mass of the empty racket $=0.045 \mathrm{~kg}$ using the script afroser rocket script. m

Launch day.
On launch day, we placed our launching apparatus on a flattened pile of cardboard to produce as close to a vert leal launch as possible. Two observes then stood 20-30m away from the launch site, at roughly right angles to each other, and measured the angle of the peak of the trajectory from their perspectives. The time taken to reach the peak was measured with a simple stop-watch as well. Whenever wind or undesired horizontal thrust pushed the rocket horizontally away from the launch site, the distance pushed was estimated to produce more accurate peak calculations (A^{\prime} and B^{\prime} in $f^{\prime \prime}$ in $)$).

Figure 2, Launch day Setup (bérds-epe view)
horizontal displacement of launched rocket (at peat k height)

observer w/timer
measures tine eloped
when rocket readers peak ($t_{\text {peak }}$)

* For some runs, there were two observers standing in
one spot, one Standing in another e one spot, one Standing in another.
(besides the timer)
Each observer. used a protractor to measure the angle θ here:

his the height off the ground of where they held the protractor
To launch the racket, the empty $2 L$ bottle was filled with a measured volume of water and placed on the apparatus, where a bicycle pump was used to increase the pressure in the rocket. The apparatus had its OWn pressure gange to measure P_{0} fisstobserver (Massed Results: (rom thursday's run only)
f^{\prime} st observer Moaswed
Secomlobserver) Values of

	$B+B^{\prime}(m)$	$\left.\theta_{B}(1) ; \theta_{B}(2)\right)^{d}$	$t_{\text {peat }}(s)$
$30+0$	$59^{\circ} ; 61^{\circ}$	1.64	
$30+0$	$60^{\circ} ; 56^{\circ}$	1.34	
$30+0$	$64^{\circ} ; 61^{\circ}$	1.61	
$30+0$	$59^{\circ} ; 58^{\circ}$	1.81	
$30+15$	$58^{\circ} ; 54^{\circ}$	$1.12,1.64$	
$30+0$	$55^{\circ} ; 65^{\circ}$	1.32	
$h_{B}(1)=66 \mathrm{~cm}$			
$h_{B}(2)=70 \mathrm{~cm}$			

Calculations:
Each measurement made was subject to pretty significant errors Gaddressed later), so rather than present a guise suggesting an accurate estimate of errors in measurement and error propgation, I calculate the trajectory peaty, h_{p} using each method a variable for a given launch, then use the mean and the RMS to analyze.

Given θ_{A} and $A+A^{\prime}$ (or $\left.\theta_{B} \& B+B^{\prime}\right)$, and h_{A} $\left(h_{B}\right)$, one can calculate $h_{\text {peak }}$ as the leg of a triangle:

Calculated th's way, $h_{\text {pent }}=\frac{A+A^{\prime}}{\left|\tan \theta_{i}\right|}+h_{A}$
(Same thing for observers BI\& B2).

launch \#	$h_{\text {pork }}$ for A	$h_{\text {peak }}$ for BI	$h_{\text {peak }}$ for $B 2$	Mean $\pm \sigma_{\bar{h}}$
1	13 m	19 m	17 m	$16 \pm 2 \mathrm{~m}$
2	22 m	18 m	21 m	$20 \pm 1 \mathrm{~m}$
3	30 m	15 m	17 m	$21 \pm 5 \mathrm{~m}$
4	17 m	19 m	19 m	$18 \pm 1 \mathrm{~m}$
5	16 m	29 m	33 m	$26 \pm 5 \mathrm{~m}$
6	18 m	22 m	15 m	$18 \pm 2 \mathrm{~m}$

I like this method more than error propagation
because the equipment used on launch day was because the equipment used on launch day was not rigorously callibrated, and each stage was not only subject to random, inconsistent human error, but could easily have been subject os systematic error that we don't know abour-hddi'tlonally, due largely to the quickness of each launch, cid the size of the bottle, and the distance from apparatus to observer, there was definition enorerror caused by uncertainty in the point at which $h_{\text {peak e }}$ had been reached.

