
PHYS 391 – Lab 2b: Counting Statistics

Key Concepts

• Ionizing Radiation

• Counting Statistics

• Poisson Distribution

• Inverse Square Law

2.1 Introduction

This lab will explore the statistical properties of counting events in a random process. The specific process
will be radioactive decays of nuclei observed by the presence of ionizing radiation in a Geiger counter. The
basic concepts explored in this lab, however, are equally applicable to counting events in any random process.

2.2 Note on Radioactive Sources

Ionizing radiation is produced naturally by many sources, and many common activities (like flying in an
airplane or getting a single dental X-ray) will increase your exposure to radiation far more than the weak
sources we will be using in the lab. Exercising some common sense, however, is in order. As we will see in
this lab, the flux of radiation from a point source drops as 1/r2, also known as the inverse square law. It
is always a good idea to reduce your exposure to any potentially dangerous situation, and with radioactive
sources the best thing you can do is minimize the amount of time the source is very close to your body. In
particular, you should not swallow the sources, and washing your hands after lab is always a good idea.

Because the University carefully controls any radiological material, the sources will need to be returned
to the TAs at the end of each lab session. These will not be left out in room 17 over the weekend. As you
will see, however, most of the radioactive items we are using are (or were) widely available household items.

2.3 Theory

2.3.1 Poisson Distribution

Any random process with two outcomes is described exactly by the Binomial distribution

Pn,p(ν) =
n!

ν!(n− ν)!
pν(1− p)n−ν

where n is the total number of trials, p is the probability of outcome A, and ν is the number of trials which
resulted in outcome A.

While the Binomial distribution describes the probability of a given number of outcomes exactly, it is
rather cumbersome to use in practice for any appreciably large number n. In the limit of n becoming large,
but the product np being finite, the Binomial distribution can be re-written as the Poisson distribution

Pµ(ν) =
µν

ν!
e−µ

where µ = np is a real number and ν again is the integer number of times a certain outcome is observed. For
the case of counting random events, outcome A can be thought of as the outcome where the event occurs,
while outcome B is where the event does not occur. The mean of the Poisson distribution is simply given
by ν = µ meaning that on average you expect to see µ events in any given time interval, and the Poisson
distribution gives the probability of observing an actual number of events ν. Figure 1 shows examples of the
Poisson distribution for a range of values of µ.

One key feature of the Poisson distribution, which is completely described by the single parameter µ, is
the fact that the standard deviation of ν is given by σν =

√
µ. If we then observe some number of events N ,

our best estimate for the average rate µ is given by N , and the uncertainty on this estimate is given by the
expected standard deviation which would be

√
µ, but is best estimated by

√
N . The relative uncertainty on

any rate measurement, then, is given by δR/R = δN/N = 1/
√
N . In other words, the relative uncertainty on

determining a rate improves with the number of events collected as 1/
√
N . Note the underlying assumption

here that when we speak of a rate it is implicit we are speaking of a number observed in some chosen time
interval, 5 seconds for example.
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Figure 1: Examples of the poisson distribution for values of µ (labeled as λ on the figure).

2.3.2 Gaussian Approximation

As soon as the value of µ becomes appreciably large such that σν/ν = 1/
√
µ . 3, the difference between a

Poisson distribution and a Gaussian distribution with mean µ and width σ =
√
µ becomes negligible. This

can be seen in Figure 1 where already for µ = 10 the probability distribution looks very Gaussian.

2.4 Detecting Ionizing Radiation

2.4.1 Types of Ionizing Radiation

Ionizing radiation is defined as any process which can ionize (knock electrons out of) an atom. Visible light
is an example of a type of radiation which is explicitly not ionizing radiation. Ionizing radiation generally
comes in many forms depending on the particles involved, but the three most common are known by their
historical designations as alpha, beta, and gamma radiation.

Alpha radiation, or alpha particles, are fully ionized helium nuclei (two protons and two neutrons)
which are emitted in certain nuclear fission reactions like the decay of 238U. These are relatively heavy
particles which can cause tremendous amounts of biological damage, but fortunately can also be shielded
quite effectively by even a small amount of material. A sheet of paper will readily stop alpha particles.
The most common household use of alpha emitters is in smoke detectors, where the attenuation of Alpha
radiation from 241Am is used to detect the presence of trace amounts of particulate matter (smoke) in the
air. Old Coleman lantern mantles used thorium dioxide which contains 232Th, a naturally occurring alpha
emitter. Alpha decays are generally only produced by very heavy nuclei.

Beta particles are electrons emitted in the weak decay of a neutron in the nucleus by the process n →
pe−νe. In some cases, the inverse process p → ne+νe is also possible, and the positron emitted in this
process is also known as a beta particle. Beta decay is common in radioactive isotopes from lower down on
the periodic table, such as 90Sr. Beta particles are more penetrating through material than alphas, although
a small amount of metal is usually enough to attenuate most commonly available beta emitters.

Gamma particles (often called gamma rays) are high energy photons which are often produced in asso-
ciation with either alphas or betas in a nuclear decay chain. For example, 60Co emits both an electron and
two photons as it decays to 60Ni. Historically there has been a distinction between X-rays and gamma rays
according to the energy of the photon, although the line between the two isn’t very clear and there is no good
physics reason to think of them differently. In fact, all the way down in energy to Ultraviolet light, photons
are ionizing. The attenuation of photons by material is highly energy dependent, however, and gamma rays
from nuclear decays typically will pass through centimeters of steel before interacting once. Dense materials
provide the best shielding for gamma rays, and thick plates or bricks of lead are often used.
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2.4.2 Geiger Counters

There are many techniques to detect ionizing radiation, but they all rely on observing the interaction of the
ionizing radiation with some active detector material. In a Geiger counter the active material is an inert gas
such as helium or neon with the addition of some halogens. This gas is contained in a volume with a high
electric field. One typical geometry is shown in Figure 2 where a positive voltage of several hundred volts is
applied between a wire (anode) in the center of a cylindrical tube (cathode) on the outside.

When ionizing radiation enters a Geiger tube, it knocks electrons out of the gas which are then accelerated
in the electric field towards the anode. These electrons will collide with other atoms in the gas kicking out
more electrons, and the end result is an avalanche of electrons falling onto the anode wire. Geiger counters
are operated at a high enough voltage that even a single electron ionized from the gas will produce a large
and easy to sense avalanche of charge falling on the central wire. The resulting “pulse” is passed through
the coupling capacitor shown in Figure 2 and used to indicate the passage of a single ionizing particle.

Figure 2: Simple cylindrical geometry of a Geiger tube.

Unlike other types of detectors, the Geiger counter gives no information about the energy of the incident
particle, but simply counts the number of times ionizing radiation passes through the Geiger tube. It has
very high efficiency for detecting electrons, somewhat less for photons (due to their less frequent interactions)
and can be effective for counting alphas only if there is a thin window to allow the alphas to enter into the
gas volume.

2.5 Poisson Statistics

This part of the lab can be done without a source of any kind. We are going to look at the background
count rate observed by the Geiger counters and compare the events seen in some time interval to a Poisson
distribution. On one of the computers in Room 17, start the application LoggerPro. Get a Geiger counter
from the TA and plug it into the LabPro green box using the special “Digital Radiation Monitor Cable”.
Placing the Geiger counter on a book or wooden block so that it is several centimeters off the table will
likely improve your results in this lab.

To set up LoggerPro to see these monitors, click the small green icon in the upper left corner of the
LoggerPro window (or select the menu item Experiment:Set Up Interface:LabPro). This will bring up
a graphical depiction of the LabPro box. On the channel where the Geiger counter is attached, select
“Radiation” (not “Student Radiation Monitor”) and close the box.

You now need to set up LoggerPro to count the number of events in some reasonable time interval. Click
on the watch icon to bring up the DataCollection dialog box (or choose the menu item Experiment:Data
Collection). Choose the mode to be Time Based, set the collection time to be some reasonably long time
(like 150 seconds) and set the sampling rate to be something like 5 seconds/sample. LoggerPro will then
count the number of events seen by the Geiger counter in a 5 second interval, and return this event count as
a single value. Make sure the “Sample at time Zero” and “Oversample” options are not selected, and close.

Now, if you start the acquisition by pushing the big green button at the top of LoggerPro you should
(after 5 seconds) start to see counts per 5 second interval displayed. The default time history isn’t so useful,
so you should add a histogram graph to see a nice Poisson distribution taking shape.

Ideally we want a mean number of counts per time interval of order 1. If your mean appears to be
significantly above or below 1, adjust the sampling rate such that you get on average about one count per
time interval. What you are observing is some combination of natural background radiation, cosmic rays,
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and spontaneous breakdowns in the Geiger tube gas. Occasionally you will see an event where many counts
happen at once which would seem to be statistically very unlikely. Not all of these background processes
are completely random, for example cosmic rays often result in several particles at once passing through a
small area.

Once you have a table of counts per time interval, copy this data to MATLAB and find the mean and
standard deviation for this data. How well does the relation σ =

√
µ hold? Try making a histogram of your

data in MATLAB. Note that the hist command isn’t very good at dealing with integers. Try specifying
exactly the bins centers using something like hist(dat, 0:1:5), or alternately use the bar command to
produce a bargraph plot.

Using the measured average count rate µ, make a figure with a Poisson distribution with that value of µ
overlayed on top of a histogram of your data. Remember, a Poisson distribution is normalized so you should
multiply the probabilities by the total number of time intervals observed to make the vertical scale work out
properly. Probably the easiest way to make the overlay is to fill one vector with the histogram bin center
values, then use the poisspdf command to fill a second vector with the desired Poisson probability at that
value. Look at section 6.1.5 in Pratap for some guidance on how to overlay plots. Any of the three methods
described there should work in this case. Print this figure out and put it in your log book. How would you
(qualitatively) assess the agreement between the Poisson distribution and your data?

What is your measured background rate in counts per second with uncertainty? Note that you only
need the total number of events seen in the entire data collection time (and the total time) to determine the
average rate. Does this agree with your Poisson mean?

2.6 Gaussian Limit

Now, take one of the sources and put it close enough to the Geiger counter to get an appreciable count rate.
If you are using one of the Fiestaware salt shakers, 10 cm should be about right. Measure the distance from
the counter to the source, as we will use this information later. Repeat your measurement of counts per
time interval. You should see an average count rate of over 10 counts per time interval. Anything over 5 is
probably OK, but if it is below that, try moving the source closer.

Again export the data to MATLAB (or use the built-in analysis tools in LoggerPro) and find the mean
and standard deviation of the number of counts per time interval. Again, does the relation that σ =

√
µ

appear to be valid? Print out your histogram (either from MATLAB or LoggerPro) and comment on how
close to a Gaussian this appears to be.

2.7 Inverse Square Law

Here we will quantitatively verify the inverse square law. For any point source, the flux of particles through
a fixed area will fall as 1/r2 where r is the distance from the source to the fixed area. In our case, the source
isn’t really a point source which may complicate things. Also, there may be some attenuation of the particles
in the air (this could in fact be highly significant for alpha particles) so we may expect to see deviations
from a perfect inverse square law.

Using the results from the previous section as a first data point, take at least six more measurements,
moving the source further away from the detector each time, and calculate the average event rate (with
uncertainties) for each distance. Make sure at least 4 measurements are taken at distances greater than 20
cm from the detector. You can either calculate the rate per second, or just count a total number of events
and divide by the elapsed time. Don’t forget to subtract the background if relevant. Plan your distances
carefully so that you actually see a reasonable number of counts at each position you measure. Be sure and
explain in your log book what distance you are quoting: a figure is probably helpful here. Moving the source
closer than about 10 cm will likely cause trouble due to the finite size of the source and detector.

The rate vs. distance data, for a point source, should follow a functional form given by R(r) = C0/r
2

where C0 is some constant and r is the distance. To test this, we would like to fit to a function like R = C0/r
n

and experimentally measure the parameter n and verify whether this is consistent with 2. It is probably
easiest to “linearize” the problem so we can fit a straight line to the data. There are several ways this
could be done, but taking the log of the equation above is probably the most straightforward. Write down
explicitly what two quantities you need to plot against each other, and how the parameters of a linear fit
correspond to the parameters C0 and n.

Enter your data into MATLAB (by hand is fine) and perform a linear fit to this data using either the
[par dpar] = linfit(x,y) function I have provided, or fit(x, y, ’poly1’) if it is available. If you are
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really feeling ambitious, you can perform a weighted fit by specifying a vector of weights for each point using
either linfit(x, y, dy) or fit(x, y, ’poly1’, ’weight’, wt), but you need to be extremely careful
to specify the errors or weights correctly.

Make a plot of rate vs. distance including error bars (the errorbar command is useful here) and overlay
this data with the results of the fit. Include this plot in your log book. Be sure to label the axes and specify
appropriate units (although this can be written in by hand later). You can either plot rate vs. distance
directly (which should not be linear) or you can plot the actual quantities which you performed the linear
fit on.

What is your measured value of n (including uncertainty), and how does this compare with what you
expect? If this is not consistent with the expectation, is there is any trend in your data which might explain
the discrepancy? For instance, is there evidence of attenuation of particles in the air, or is there just one
point which seems to be pulling the fit away from the expected value? A residual plot (data value - fit value)
might be useful if the trend isn’t clear from your plot above. Would the non-point nature of the sources
produce a coefficient greater, or less than n = 2, and why? The flux of particles from a source follows
exactly the same logic as the electric field strength from a charge distribution under Gauss’ Law. Discuss
your results in your log book and include any plots which can support your arguments.

2.8 Attenuation in Matter

Finally we want to verify the attenuation of ionizing radiation in matter, and measure the attenuation
length. Place the source at a distance where you get a good counting rate (this can be quite close), and
take measurements with varying amounts of material placed between the source and the detector without
changing the distance. Sheets of aluminum foil work well, although notebook paper will also work. Increase
the thickness of the material in a geometric progression (1, 2, 4, 8, ...) until you see at least a factor of 4
attenuation in the observed rate. To save time, it is best to figure out how much material you need to reduce
the rate by at least a factor of 4 first, then work backwards in reasonably spaced steps so that you can cover
the full range of rates with somewhere between 5-10 data points.

We expect the observed rate to vary as R(l) = R0e
−l/λ where again R0 is the unattenuated rate, l is the

thickness of material attenuating the particles, and λ is the attenuation length. Again, figure out how to
linearize the problem and perform a linear fit to extract the attenuation length λ. It is fine to do this fit in
units of sheets of material (in other words l is just an integer number with some funny units). Include plots
and a final measurement of λ in your log book. To really get a proper uncertainly on λ, you should use the
individual rate errors on each point in the fit. Be very careful about your error propagation, however, since
you will need the absolute uncertainty on logR, since that should be what you are plotting.

To try to make this result a little more meaningful, we need to convert λ into suitable units. First,
estimate somehow the thickness of your absorber material and convert λ into units of centimeters. If you
used aluminum foil, you should just measure the thickness of a stack of sheets using a set of calipers. Second,
estimate the density of your material somehow (you can just look it up if you wish) and calculate the product
of the attenuation length times the density λρ which has units of g/cm−2. This product is the typical unit
used for quoting attenuation length. Write down your best value for λρ with uncertainty based on your
linear fit above.

Electrons (beta particles) in aluminum tend to have an attenuation length of around 0.2g/cm−2 although
it depends a bit on the exact electron energy. For alpha particles the attenuation length is many orders of
magnitude shorter, while for photons it typically is much longer (again depending on energy). If you used
paper, the attenuation length won’t be so terribly different when written in these density-corrected units.
From your observations, does it seem more likely that we are detecting alpha, beta or gamma particles?
Justify your answer.

2.9 Final Thoughts

Most radioactive processes don’t just produce one type of ionizing radiation, although usually one type is
more apparent than others. Often, alpha or beta particles can be shielded quite readily with a small amount
of material, but then there is a small component of gamma radiation which doesn’t go away. On the other
hand, just because a particular type of radiation is produced doesn’t mean a given detector is sensitive to
it. Understanding the response of your detectors to different radiation types is critical for making accurate
measurements of ionizing radiation.
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