2) Coding in for both for our resistance.

Note: we didn't account for our resistance in previous problems.

Can we fix this computationally? sunday

Need a \(F \) on seed ball, \(F = E + F_{air} \)

\[y(t) = \frac{v_0 \cdot \sin(\theta)}{g} \]

\[V(t) = V_0 + (F_{net}/m) \cdot \Delta t \]

\[F_{net} = \frac{F - mg}{m} \]

\[F = F_{air} = ge - \frac{g - Du \cdot v}{m} \]

\[\frac{h_g - h_i}{\Delta t} = v_y + \Delta v \]

\[\frac{F_{net}}{m} = \frac{g \cdot \text{air}}{m} + F_{air} \]

\[V(t) = V_0 + (F_{net}/m) \cdot \Delta t \]

\[V_{avg}(i) = (V_i + V(t))/2 \]

\[V_i = V(t) \]

\[y_{end}(i) = y((i-1)) + v_{avg}(i) \cdot \Delta t \]

\[h_g = h_i - v_y + \Delta v \]
1) More about error

2) Python

(accuracy)

- Note students to suggest labels for plot. Good idea.

- Accuracy involves knowing what is good and what isn't.

1) Can reduce statistical error (increase precision) by taking more measurements.

2) Must address accuracy by removing and/or reducing "systematic errors".

Give example.

125.3 ± 0.6
126.0 ± 0.6 (GeV/c)

took data until done.
Example of reducing δ

Higgs boson took 1/4 year to take data to use probability of getting at least as strong a result (for alt expl) was 1:3 million and significance of 5 sigma (δ)

result was $+ (120.3 \pm 0.6) \text{GeV/c}^2$ error

$- (120.4 \pm 0.6) \text{GeV/c}^2$ error

teams were blinded to each other since 2001

Example of systematic error:

Example would be mis-calibrated instrument

Actual quantity

Data fit experimt
First we'll look at 1) increasing precision.

1) Consider distribution of 10 measurements:

26, 27, 26, 28, 27, 29, 25, 24, 26, 25

We'll look at the distribution, so we

i) Sort

23, 27, 29, 24, 25, 27, 26, 26, 22, 23

ii) Count

23 27 25 26 27 26
1 3 2 3 0 1

iii) Plot frequency of occurrence.
\[x = \frac{\sum_{i} x_{i}}{N} = \frac{\sum_{j} N_{j} x_{j}}{\sum_{j} N_{j}} \]

- \(j \) ranges over bins
- \(x = \) value of \(x_{i} \)
- \(N_{j} \) th in bin

1) could write \(f_{j} = \frac{x_{j}}{N} \)

\[\bar{x} = \sum_{j} f_{j} x_{j} \]

b1) aside about real could be bin widths

"Normally occurs real number with some accuracy say 0.1 or 0.01..."

distribution of so measure looks in "real like this" [already ordered]

23.7, 23.8, 23.9, 23.1, 23.16, etc

- 0.1
- 0.1
- 0.0
- 0.7

With at spacers in list, pick some reasonable average of gaps or "bin widths"
(1) were working towards a statistical description of data distribution

So a probability distribution function (it is data dependent)

So will have from

\[\int f(x) \, dx \]

limit as \(\Delta x \to 0, N \to \infty \) is \(f(x) \)

Then \(\int f(x) \, dx \) is the fraction of

simpler between \(x \) and \(x + \Delta x \)

or more properly formally,

\[\int_{a}^{b} f(x) \, dx = \text{fraction of simpler between } a \text{ and } b \]

and need to normalize \(\int_{a}^{b} f(x) \, dx = 1 \)
e) Now, with our fixed properly normalized we can state that:

\[\bar{X} = \int x f(x) \, dx \quad \text{expectation value} \]

\[\sigma^2 = \int (x - \bar{X})^2 f(x) \, dx \quad \text{variance} \]

5) Central Limit Theorem

Start with any distribution with well-defined mean and variance.

Can set a sample size \(N \)
and take \(N \) samples (example) of above.

\[\bar{X}_N = \frac{\sum_{i=1}^{N} x_i}{N} \]

\[\text{e.g., } N = 4 = \left\{ 10, 10, 14, 16 \right\} = 12.5 \]
get something that looks like a "normal distribution" further, if we increase example size \(N \) and look at test data, data more normal CLT says that as \(N \to \infty \) so for \(d \to \) "normal" with well-defined mean and variance.

Note, we started with any distribution and only arrived if had a well defined mean and variance.

It might not, itself, be "normal."

But what does it mean to be "normal?"

Implies that \(f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \) or \(e^{-x^2/2} \)
For now we will call \(z \) the "indih Felpa" and \(x \) the "maximally probable value."

I would typically need to normalize this

\[
\int f(x) \, dx = 1
\]

h.) ERF

So the probability of finding \(z \) in a sample between \(u-\sigma \) and \(u+\sigma \),

\[
\text{Prob} (u-\sigma, u+\sigma) = \int_{-\sigma}^{\sigma} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \, dx
\]

can be done as

\[
\text{Prob} = \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{z^2}{2}} \, dz
\]

called the "error Felpa" or ERF.

Look up values in book.