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A COHERENCE THEOREM FOR PSEUDO SYMMETRIC

MULTIFUNCTORS

DIEGO MANCO

Abstract. In [Yau24] Yau defines the notion of pseudo symmetricCat-enriched
multifunctor between Cat-enriched multicategories and proves that Mandell’s
inverse K-theory multifunctor [Man10] is pseudo symmetric. We prove a co-
herence theorem for pseudo symmetric Cat-multifunctors. As an application
we prove that pseudo symmetric Cat-multifunctors, and in particular Man-
dell’s inverse K-theory, preserve En-algebras (n = 1, 2, ...,∞), at the cost of
changing the parameterizing En-operad.

1. Introduction

Permutative categories are symmetric monoidal categories that are strictly as-
sociative and unital. Let Perm be the category of permutative categories. By a
construction of May [May74], we can define algebraic K-theory as a functor from
Perm to spectra. Elmendorf and Mandell [EM06] introduced multicategories in
homotopy theory to study the multiplicative properties of this functor. They gave
Perm the structure of a multicategory and showed that the K-theory construction
can be extended to a symmetric multifunctor landing in spectra. This implies that
K-theory preserves certain multiplicative structures—for example, the K-theory of
a bipermutative category is an E∞ ring spectrum.

Following work of Thomason [Tho95], Mandell [Man10] introduced inverse K-
theory P , a functor from Γ-categories (modelling connective spectra) to Perm that
provides a homotopy inverse to K-theory. Elmendorf [Elm21] and Johnson-Yau
[JY22] extended P to a Cat-enriched multifunctor, but one that is not symmetric:
it is not compatible with the permutation of elements in the domains of multicate-
gory mapping spaces. To account for this Yau [Yau24] introduced pseudo-symmetric
multifunctors, where there is a compatibility only up to coherent natural isomor-
phisms, and he proved that Mandell’s inverse K-theory multifunctor P is pseudo
symmetric in his sense.

In this article we establish a 2-adjunction that lets us rigidify pseudo symmetric
multifunctors and write them as symmetric multifunctors at the cost of fattening
up their domain in a specific way. As an application we get a new result in mul-
tiplicative K-theory: pseudo symmetric multifunctors, and in particular Mandell’s
inverse K-theory, preserve En-algebras for n = 1, 2, . . . ,∞ at the cost of changing
the parameterizing En operad. For example, they send commutative monoids to
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E∞ algebras.

Let us go back and provide more details of the above panorama. Segal’s infi-
nite loop space machine [Seg74] allows the construction of spectra from symmetric
monoidal categories. May’s construction [May74] provides an alternative way of
building spectra from permutative categories. Both K-theory constructions turn
out to be equivalent [MT78], with Perm being equivalent to the category of sym-
metric monoidal categories by a theorem of Isbell [Isb69]. The question about what
kind of structure to impose on a permutative category so that its K-theory is an
E∞ ring spectrum was answered independently by Elmendorf and Mandell [EM06]
and May [May09], the former using the theory of multicategories. To study multi-
plicative K-theory, one would like the domain of the K-theory construction Perm

to have a symmetric monoidal structure and K-theory to be a monoidal functor.
That way, K-theory would preserve multiplicative structures in Perm. However,
Perm lacks a natural symmetric monoidal structure, although it admits one in a
2-categorical sense [GJO22].

Multicategories, also known as colored operads, generalize symmetric monoidal
categories by supplying a setup for working with multi-input maps, thus provid-
ing an alternative way of encoding multiplicative structures even in the absence of
symmetric monoidal structures. In a sense, multicategories allow us to talk about
multilinear maps without making any reference to tensor products. Multiplicative
structures can then be encoded in a multicategory via the actions of operads and
similar gadgets. Elmendorf-Mandell [EM06] gave Perm the structure of a multi-
category and extended algebraic K-theory to a symmetric multifunctor landing in
symmetric spectra. This implies that K-theory preserves multiplicative structures.
This is how they proved that the K-theory of a bipermutative category is an E∞

ring spectrum. Multiplicative K-theory has also been defined as a symmetric multi-
functor from the multicategory of Waldhausen categories Wald to spectra [BM11],
with Wald providing another example of a multicategory that doesn’t arise from
a symmetric monoidal structure [Zak18].

Spectra arising from the Segal-May construction are all connective, and by a
theorem of Thomason [Tho95] the K-theory construction is surjective on homo-
topy types. Mandell’s inverse K-theory functor P : Γ-Cat → Perm witnesses this
by providing a homotopy stable inverse to K-theory. Here Γ-categories model con-
nective spectra by [Tho80, Cis99, BF78]. Elmendorf [Elm21] and Johnson-Yau
[JY22] prove independently that Mandell’s inverse K-theory functor can be ex-
tended to a Cat-enriched multifunctor P : Γ-Cat → Perm between Cat-enriched
multicategories. However, P turns out to not be symmetric [JY22], i.e., it doesn’t
preserve the action of the symmetric group on the hom objects of the multicate-
gories by permutation of inputs. So their results can only be used to prove that
P preserves multiplicative structures that don’t involve symmetry, like associative
monoids [JY22]. This obstruction led Yau [Yau24] to define pseudo symmetric mul-
tifunctors. These are non-symmetric Cat-enriched multifunctors that preserve the
action of the symmetric group of multicategory mapping spaces only up to coherent
natural isomorphisms. One of the main results of [Yau24] is that P is in fact pseudo
symmetric.
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Our main result can be interpreted as a coherence result for pseudo symmet-
ric multifunctors. If F : M → N is a pseudo symmetric multifunctor between
Cat-enriched multicategories, we prove that the natural isomorphisms attesting
the pseudo symmetry of F assemble together to give a symmetric Cat-enriched
multifunctor φ(F ) : M× EΣ∗ → N satisfying a universal property, where EΣ∗ is
the categorical Barratt-Eccles operad defined in Example 2.5. We can also think
about our result as a rigidification result. We can rigidify F and turn it into a
symmetric Cat-enriched multifunctor φ(F ), at the cost of changing its domain.

Theorem 1.1. (Theorem 3.3) Let M be a Cat-enriched multicategory. There is
a pseudo symmetric multifunctor ηM : M → M × EΣ∗ such that for every Cat-
enriched multicategory N and each pseudo symmetric multifunctor F : M → N ,

there exists a unique symmetric Cat-enriched multifunctor φ(F ) : M× EΣ∗ → N
such that the following diagram commutes:

M× EΣ∗

M N .

φ(F )

F

ηM

That is, F = φ(F ) ◦ ηM as pseudo symmetric multifunctors.

Thus, if O is an operad in Cat, pseudo symmetric algebras in a Cat-enriched
multicategory M over O, i.e., pseudo symmetric multifunctors O → M, are sym-
metric algebras in M over O×EΣ∗. The following result, which appears as Corol-
lary 4.6, holds since multiplying by EΣ∗ sends the commutative operad {∗} to
the E∞ operad EΣ∗ and En operads in Cat, like the ones defined in [Ber96] and
[BFSV03], to En operads.

Corollary 1.2. (Corollary 4.6) Let F : M → N beCat-enriched pseudo symmetric
multifunctor. Then,

(1) F sends commutative monoids to E∞ algebras.
(2) F sends En algebras to En algebras for n = 1, 2, . . . ,∞.

This corollary extends our understanding of the behavior of inverse K-theory
since it implies that the inverse K-theory multifunctor P , which is pseudo sym-
metric by work of Yau [Yau24], sends commutative monoids to E∞-algebras and
preserves En algebras (n = 1, 2, . . . ). Since P provides a stable inverse to K-theory,
and K-theory is a symmetric multifunctor, this implies that every En-algebra in
Γ-categories is stably equivalent to the K-theory of an En algebra in permutative
categories. This shows how Theorem 1.1 can be used to grasp the behavior of
pseudo symmetric multifunctors on structures parameterized by symmetric oper-
ads in general.

In [Yau24] Yau defines the 2-category Cat-Multicat having Cat-enriched mul-
ticategories as 0-cells, symmetric multifunctors as 1-cells and multinatural trans-
formations as 2-cells. He also defines the 2-category Cat-Multicatps with 0-
cells Cat-enriched multicategories, 1-cells pseudo symmetric multifunctors, and 2-
cells pseudo symmetric Cat-multinatural transformations. Every symmetric Cat-
enriched multifunctor (respectively multinatural transformation) is canonically a
pseudo symmetric multifunctor (respectively multinatural transformation), so there
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is a 2-functorial inclusion j : Cat-Multicat → Cat-Multicatps. Taking into ac-
count these 2-categorical structures we can improve our previous result by provid-
ing a left adjoint ψ to j, which, at the 0-cell level, sends a multicategory M to
ψ(M) = M× EΣ∗.

Theorem 1.3. (Corollary 3.5 and Theorem 3.7) The inclusion j : Cat-Multicat →
Cat-Multicatps admits a left 2-adjoint ψ : Cat-Multicatps → Cat-Multicat

with ψ(M) = M × EΣ∗ for M a Cat-multicategory. In particular, for Cat-
multicategories M and N we have an isomorphism of categories

Cat-Multicatps(M,N ) ∼= Cat-Multicat(M× EΣ∗,N ).

An important consequence of this theorem is that we can give a very simple
and compact description of the 2-category Cat-Multicatps solely in terms of sym-
metric Cat-multifunctors and Cat-mutinatural transformations, which we do in
Definition 3.8.

Bohmann and Osorno [BO15] make use of a spectrally enriched version of the
Elmendorf-Mandell construction together with the description of equivariant spec-
tra in terms of presheaves of spectra due to Guillou and May [GM11] to define an
equivariant infinite loop space machine. Since preservation of multiplicative struc-
tures is one of the main ingredients in the construction of this equivariant machine
[BO15], our results can also be regarded as a step towards proving the conjecture
that every connective equivariant spectrum, i.e., those whose fixed point spectra
are connective, arises from Bohmann and Osorno’s construction. The infinite equi-
variant loop space machine KG from [GMMO23] is also suspected to be pseudo
symmetric, so our result might help understand the preservation of multiplicative
structures in the equivariant context as well.

Outline. In Section 2 we recall the definition of the 2-categories Cat-Multicat

and Cat-Multicatps. In Section 3 we prove Theorems 1.1 and 1.3. We also extract
a new and compact description of the 2-category Cat-Multicatps. In Section 4 we
obtain the desired consequences for Mandell’s inverse K-theory functor P included
in Corollary 1.2.

Acknowledgements. The author would like to thank Angélica Osorno, without
whom this article wouldn’t exist, for her mentorship and guidance during all stages
of this project. The author would also like to thank Dan Dugger for providing help-
ful advice and feedback as well as Donald Yau for his helpful comments, questions,
email exchanges, and encouragement. The author was supported by the Fulbright-
COLCIENCIAS scholarship awarded by the Fulbright Colombia Commission and
COLCIENCIAS, now a part of the Ministry of Science, Technology, and Innovation
of the Colombian government. The author was also supported by the University of
Oregon through the Anderson Mathematics PhD Student Research Award.

2. Symmetric and pseudo symmetric Multifunctors

We begin by reviewing the definition of multicategory enriched in a symmet-
ric monoidal category. In the following definition (C, 1,⊕, λ, ρ, ξ) is a symmetric
monoidal category with ⊕ : C × C → C the monoidal product, 1 the monoidal
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unit, λ the left unit isomorphism, ρ the right unit isomorphism and ξ the sym-
metry. In this paper we will consider only categories enriched over Cat with the
monoidal structure given by products, but we use a general monoidal category in
the definition to make explicit the fact that this definition doesn’t make use of the
2-categorical structure of Cat.

Remark 2.1. We will also use the following notation: if σ ∈ Σn and τi ∈ Σki for
1 ≤ i ≤ n, σ〈τ1, . . . , τn〉 ∈ Σk1+···+kn is the permutation that permutes n blocks of
lengths k1, . . . , kn according to σ and each block of length ki according to τi.

Definition 2.2. If C is a symmetric monoidal category, a C-multicategory (M, γ, 1)
consists of the following data.

• A class of objects Ob(M).
• For every n ≥ 0, 〈a〉 = 〈ai〉ni=1 ∈ Ob(M)n and b ∈ Ob(M), an object in C
denoted by

M(〈a〉; b) = M(a1, . . . , an; b).

We will write 〈a〉 instead of 〈ai〉ni=1 when n is clear from the context or
irrelevant. [In the case C = Cat, an object f of M(〈a〉; b) will be called an
n-ary 1-cell with input 〈a〉 and output b and will be denoted as f : 〈a〉 → b.

Similarly, we will call α : f → g in M(〈a〉; b)(f, g) an n-ary 2-cell.]
• For each n ≥ 0, 〈a〉 ∈ Ob(M)n, b ∈ Ob(M), and σ ∈ Σn, a C-isomorphism

M(〈a〉; b) M(〈a〉σ; b)σ
∼=

called the right σ action or the symmetric group action. Here

〈a〉σ = 〈a1, . . . , an〉σ = 〈aσ(1), . . . , aσ(n)〉.

[In the case C = Cat we write fσ for the image of an n-ary 1-cell f : 〈a〉 → b

in M and similarly for 2-cells.]
• For each object a ∈ Ob(M), a morphism

1 M(a; a)
1a

called the a-unit. In the case C = Cat we notice that if a ∈ Ob(M),
1a : a → a is a 1-ary 1-cell while if f : 〈a〉 → b is an n-ary 1-cell, then
1f : f → f is an n-ary 2-cell in M(〈a〉; b)(f, f) so our notation is unam-
biguous.

• For every c ∈ Ob(M), n ≥ 0, 〈b〉 = 〈bj〉nj=1 ∈ Ob(M)n, kj ≥ 0 for 1 ≤ j ≤

n, and 〈aj〉 = 〈aj,i〉
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, a morphism in C,

M(〈b〉; c)⊗
n
⊗

j=1

M(〈aj〉; bj) M(〈a〉; c),
γ

where we adopt the convention that 〈a〉 ∈ Ob(M)k, where k =
∑n

i=1 kj ,

denotes the concatenation of the varying aj’s for j = 1, . . . , n. We write
this as

〈a〉 = 〈a1, . . . , an〉 = 〈〈aj〉〉
n
j=1 = 〈a1,1, . . . , a1,k1 , a2,1, . . . , an−1,kn−1an,1, . . . , an,kn〉.

The previous data are required to satisfy the following axioms.

• Symmetric group action: For every n ≥ 0, 〈a〉 ∈ Ob(M), b ∈ Ob(M),
and σ, τ in Σn the following diagram commutes in C :
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M(〈a〉; b) M(〈a〉σ; b)

M(〈a〉στ ; b).

σ

στ
τ

We also require the identity permutation idn ∈ Σn to act as the identity
morphism on M(〈a〉; b).

• Associativity: For every d ∈ Ob(M), n ≥ 1, 〈c〉 = 〈cj〉nj=1 ∈ Ob(M)n,

kj ≥ 0 for 1 ≤ j ≤ n with kj ≥ 1 for at least one j, 〈bj〉 = 〈bj,i〉
kj
i=1 ∈

Ob(M)kj for 1 ≤ j ≤ n, li,j ≥ 0 for 1 ≤ j ≤ n and 1 ≤ i ≤ kj , and

〈aj,i〉 = 〈aj,i,p〉
li,j
p=1 ∈ Ob(M)li,j for 1 ≤ j ≤ n and 1 ≤ i ≤ kj , the following

associativity diagram commutes in C:

(2.1)

M(〈c〉; d)⊗

(

n
⊗

j=1

M(〈bj〉; cj)

)

⊗
n
⊗

j=1

(

kj
⊗

i=1

M(〈aj,i〉; bj,i)

)

M(〈b〉; c) ⊗
n
⊗

j=1

(

kj
⊗

i=1

M(〈aj,i〉); bj,i

)

M(〈c〉; d)⊗
n
⊗

j=1

(

M(〈bj〉; cj)⊗
kj
⊗

i=1

M(〈aj,i〉; bj,i)

)

M(〈c〉; d)⊗
n
⊗

j=1

M(〈aj〉; cj) M(〈a〉; b).

γ⊗1

∼=

γ

1⊗
⊗n

j=1 γ

γ

• Unity: Suppose b ∈ Ob(M) and 〈a〉 = 〈aj〉nj=1 ∈ Ob(M), then the follow-
ing right unity diagram commutes in C :

M(〈a〉; b)⊗
n
⊗

j=1

1

M(〈a〉; b)⊗
n
⊗

j=1

M(aj ; aj) M(〈a〉; b).

id⊗
n
⊗

j=1

1aj
∼=

γ

With b, 〈a〉 as before, we also demand that the following left unity diagram
commutes in C.

1⊗M(〈a〉; b)

M(b; b)⊗M(〈a〉; b) M(〈a〉; b).

λ
1b⊗id

γ

• Top equivariance: For every c ∈ Ob(M), n ≥ 1, 〈b〉 = 〈bj〉nj=1 ∈

Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n, 〈aj〉 = 〈aj,i〉
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n,
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and σ ∈ Σn, the following diagram commutes:

(2.2)

M(〈b〉; c)⊗
n
⊗

j=1

M(〈aj〉; bj) M(〈b〉σ; c)⊗
n
⊗

j=1

M(〈aσ(j)〉; bσ(j))

M(〈a1〉, . . . , 〈an〉; c) M(〈aσ(1)〉, . . . , 〈aσ(n)〉; c).

σ⊗σ−1

γ γ

σ
〈

idkσ(1)
,...,idkσ(n)

〉

Here σ−1 is the unique isomorphism in C, given by the coherence theorem
for symmetric monoidal categories, that permutes the factors M(〈aj〉, bj)
according to σ−1.

• Bottom equivariance: For 〈aj〉, 〈b〉 and c as in Top equivariance (2.2),
the following diagram commutes:

(2.3)

M(〈b〉; c)⊗
n
⊗

j=1

M(〈aj〉; bj) M(〈b〉, c)⊗
n
⊗

j=1

M(〈aj〉τj ; bj)

M(〈a1〉, . . . , 〈an〉; c) M(〈a1〉τ1, . . . , 〈an〉τn; c).

id⊗
n
⊗

j=1

τj

γ γ

idn

〈

τ1,...,τn

〉

This concludes the definition of a C-multicategory.

Remark 2.3. A C-operad is a C-multicategory with one object. If O is a C-
operad, its n-ary operations will be denoted by On ∈ Ob(C). A non symmetric
C-multicategory (C-operad) is defined in the same way as a C-multicategory (C-
operad) excluding the data of the symmetric group action as well as the symmetric
group, top and bottom equivariance coherence axioms. We will only be concerned
with symmetric multicategories and operads. C-multicategories are often referred
to as colored operads, with the objects of the C-multicategory being referred to as
colors and C-operads having just one color.

Example 2.4. As examples of Set-operads, where Set has the monoidal structure
induced by products in Set, we have the commutative operad Comm = {∗} with
Commn = {∗}. Another example is the associative operad Ass = Σ∗ with Assn =
Σn, with the right action of the symmetric product given by right multiplication
and γ defined in the following way. If n ≥ 1 and k1, . . . , kn natural numbers
with k = Σni=1ki, we define γ : Σn × (

∏n

i=1 Σki) → Σk given for σ ∈ Σn and
〈τ1, . . . , τn〉 ∈

∏n

i=1 Σki by

γ(σ, 〈ρi〉
n
i=1) = σ〈ρi〉

n
i=1 = σ〈ρ1, . . . , ρn〉,

as in Remark 2.1. When n is clear from the context we will write σ〈ρi〉 = σ〈ρi〉ni=1.

Example 2.5. We will consider Cat-multicategories where the monoidal struc-
ture in Cat is given by products. One source of examples is the forgetful functor
Ob: Cat → Set which forgets the morphism structure and remembers only the
object set. Its right adjoint E : Set → Cat is the functor that takes a set A to
EA, the category with objects Ob(EA) = A, and with a unique isomorphism be-
tween each pair of objects. E sends a morphism f : A → B of sets to the functor
Ef : EA → EB, the only functor such that f = Ob(Ef). E preserves products,



8 DIEGO MANCO

and thus, if O is a Set-operad, EO is a Cat-operad. Similarly, if M is a Set-
multicategory, EM is a Cat-multicategory with the same collection of objects as
M.

We will call EComm = {∗} the commutative Cat-operad. The Barratt-Eccles
operad is the Cat-operad EΣ∗ = EAss. Cat-algebras over this EΣ∗ are precisely
permutative categories [May74].

Example 2.6. Another source of examples for multicategories are symmetric monoidal
categories, and thus also permutative categories. Each symmetric monoidal cate-
gory C has an associated Set-multicategory End(C), whose objects agree with the
objects of C and such that for 〈a〉 ∈ Ob(C)n and b ∈ Ob(C),

End(C)(〈a〉; b) = C(a1 ⊗ · · · ⊗ an, b).

Here we take a1 ⊗ · · · ⊗ an with the leftmost parenthesization. Any fixed paren-
thesization would work. An empty string of objects is interpreted as the monoidal
unit 1 ∈ Ob(C).

Next, we define 1-cells between C-multicategories that preserve the action of the
symmetric group. These are called symmetric C-multifunctors.

Definition 2.7. A (symmetric) C-multifunctor F : M → N between C-multicategories
M and N consists of the following data.

• An object assignment F : Ob(M) → Ob(N ).
• For each n ≥ 0, 〈a〉 ∈ Ob(M)n and b ∈ Ob(M) a C morphism

M(〈a〉; b) N (〈Fa〉;Fb).F

These data are required to preserve units, composition, and the action of the sym-
metric group.

• Units: For each object a ∈ Ob(M), F (1a) = 1Fa, i.e., the following dia-
gram commutes in C :

M(a, a)

1 N (Fa, Fa).

F1a

1Fa

• Composition: For every c ∈ Ob(M), n ≥ 0, 〈b〉 = 〈bj〉nj=1 ∈ Ob(M)n,

kj ≥ 0 for 1 ≤ j ≤ n, and 〈aj〉 = 〈aj,i〉
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n and

1 ≤ i ≤ n, the following diagram commutes in C :

(2.4)

M(〈b〉; c)⊗
n
⊗

j=1

M(〈aj〉; bj) N (〈Fb〉;Fc)⊗
n
⊗

j=1

N (〈Faj〉;Fbj)

M(〈a〉; c) N (〈Fa〉;Fc).

F⊗
n
⊗

j=1

F

γ γ

F

• Symmetric Group Action: For each 〈a〉 ∈ Ob(M)n and b ∈ Ob(M) the
following diagram commutes in C :
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M(〈a〉; b) N (〈Fa〉;Fb)

M(〈a〉σ; b) N (〈Fa〉σ;Fb).

F

σ∼= σ∼=

F

Next we define composition of C-multifunctors.

Definition 2.8. • We define the horizontal composition of C-multifunctors
in the following way. Let F : M → N , and G : N → Q be C-multifunctors,
we define the C-multifunctor GF : M → Q [Yau24] on objects as the com-
position

Ob(M) Ob(N ) Ob(Q),F G

and its component functors for 〈a〉 ∈ Ob(M)n, b ∈ Ob(M) as the composite

M(〈a〉; b) N (〈Fa〉;Fb) Q(〈GFa〉;GFb).F G

• The identity C-multifunctor 1M : M → M is defined as the identity as-
signment on objects with the identity functors as component functors.

Next we define 2-cells between C-multifunctors. These will be the 2-cells of a
2-category with 0-cells C-multicategories and 1-cells C-multifunctors.

Definition 2.9. ([Yau24], Def. 3.2.5) For (symmetric) C-multifunctors F,G : M →
N , we define a C-multinatural transformation θ : F ⇒ G as the data of a component
morphism θa : 1 → N (Fa,Ga) in C for each a ∈ Ob(M) subject to the commuta-
tivity of the following diagram in C for each 〈a〉 ∈ Ob(M)n and b ∈ Ob(M),

1⊗M(〈a〉; b) N (Fb;Gb)⊗N (〈Fa〉;Fb)

M(〈a〉, b) N (〈Fa〉;Gb).

M(〈a〉; b)⊗
⊗n

j=1 1 N (〈Ga〉;Gb) ⊗
⊗n

j=1 N (Faj ;Gaj)

θb⊗F

γ∼=

∼=
G⊗

⊗

θaj

γ

We define the identity multinatural transformation 1F : F → F to have = com-
ponents (1F )a = 1Fa for a an object of M.

Remark 2.10. When C = Cat, and given F,G : M → N Cat-multifunctors and
the data of a 1-ary 1-cell θa : Fa→ Ga for each a ∈ Ob(M), the commutativity of
the diagram in the previous definition means that for every n ≥ 0, 〈a〉 ∈ Ob(M)n,
b ∈ Ob(M) and each 1-cell f : 〈a〉 → b,

(2.5) γ(Gf ; 〈θaj 〉) = γ(θb;Ff)

holds in N (〈Fa〉;Gb) and that, for every 2-cell α : f → g in M(〈a〉; b)(f, g),

(2.6) γ(Gα; 〈1θaj
〉) = γ(1θb ;Fα)

in N (〈Fa〉;Gb). We can express (2.5) diagrammatically as the commutativity of
the square
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〈Fa〉 〈Ga〉

Fb Gb,

〈θaj
〉

Ff Gf

θb

where the composition of adjacent 1-cells is done through γ and a square represents
an equality between composite 1-cells. In the same fashion, and using (2.5), we can
express (2.6) as the equality of multicategorical pasting diagrams

〈Fa〉 〈Ga〉 〈Fa〉 〈Ga〉

=

Fb Gb Fb Gb.

FgFf

〈θaj
〉

Gg

〈θaj
〉

Ff GgGf

θb

θb

Fα Gα

Here the concatenation of adjacent 2-cells is done through γ, and an arrow la-
beled with the 1-cell h is interpreted as the 2-cell 1h : h → h. For example, the
left hand side diagram represents γ(1θb, Fα) while the right hand side represents
γ(Gα, 〈θαj

〉). The empty squares represent equalities between composite 1-cells.

Next, we define horizontal and vertical compositions of C-multinatural transfor-
mations.

Definition 2.11. ([Yau24], Def. 3.2.7)

Suppose given θ : F ⇒ G, ζ : G⇒ H C-multinatural transformations with
F,G,H : M → N C-multifunctors. The vertical composition ζθ : F ⇒ H is
defined as having as component at each a ∈ Ob(M) (ζθ)a, the composite

1 1⊗ 1 N (Ga;Ha)⊗N (Fa;Ga) N (Fa;Ha).
∼= ζa⊗θa γ

Suppose that θ : F ⇒ G and ζ : F ′ ⇒ G′ are C-multinatural transformations with
F,G : M → N and F ′, G′ : N → Q C-multifunctors. The horizontal composition
ζ ∗ θ : F ′F ⇒ G′G is defined as the C-multinatural transformation with component
at each a ∈ Ob(M), given by the composite

1 Q(F ′Fa;G′Ga)

1 ⊗ 1 Q(F ′Ga;G′Ga) ⊗ N (Fa;Ga) Q(F ′Ga;G′Ga) ⊗ Q(F ′Fa;F ′Ga).

∼=

(ζ∗θ)a

ζGa⊗θa 1⊗F ′

γ

Remark 2.12. When C = Cat and given θ : F ⇒ G, ζ : G⇒ H Cat-multinatural
transformations with F,G,H : M → N C-multifunctors and a ∈ Ob(M),

(2.7) (ζθ)a = γ(ζa, θa.)

On the other hand, if θ : F ⇒ G and ζ : F ′ ⇒ G′ are Cat-multinatural transforma-
tions with F,G : M → N and F ′, G′ : N → Q Cat-multifunctors,

(2.8) (ζ ∗ θ)a = γ(ζGa;F
′θa).

Yau proves in [Yau24] that Definitions 2.2, 2.7, 2.8 and 2.11 assemble together to
give the 2-categoryC-Multicat, with 0-cells consisting of C-multicategories, 1-cells
symmetric C-multifunctors, and 2-cells C-multinatural transformations. There is
a non symmetric variant where we drop the requirement that the C-multifunctors
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preserve the symmetric group action, as well as dropping the coherence axioms
related to the symmetric group action, but we won’t refer to this 2-category again.

For the rest of the article we fix our symmetric monoidal category C to be Cat,

with the symmetric monoidal structure induced by products. In this context we
can define a pseudo symmetric variant of this 2-category, namely Cat-Multicatps

using the 2-categorical structure of Cat. The objects of Cat-Multicatps are still
Cat-multicategories, but the 1-cells are pseudo symmetricCat-multifunctors: Cat-
multifunctors where we only require that they preserve the symmetric group action
up to coherent isomorphisms.

Definition 2.13. ([Yau24] Def. 4.1.1) Suppose thatM,N areCat-multicategories.
A pseudo symmetric Cat-multifunctor F : M → N consists of the following data:

• A function on object sets F : Ob(M) → Ob(N ).
• For each 〈a〉 ∈ Ob(M)n and b ∈ Ob(M), a component functor

M(〈a〉; b)
F

// N (〈Fa〉;Fb).

• For each σ ∈ Σn, 〈a〉 ∈ Ob(M)n, b ∈ Ob(M), a natural isomorphism
Fσ,〈a〉,b

M(〈a〉; b) N (〈Fa〉;Fb)

M(〈a〉σ; b) N (〈Fa〉σ;Fb).

F

σ σ

F

Fσ,〈a〉,b

∼=

When 〈a〉 and b are clear from the context we write simply Fσ, and if
f ∈ Ob(M(〈a〉, b)) we will denote by Fσ,〈a〉,b;f = Fσ;f : F (fσ) → F (f)σ
the 2-cell in N (〈Fa〉σ;Fb) corresponding to the component of Fσ at f.
Naturality for Fσ means that given α : f → g a 2-cell in M(〈a〉; b)(f, g),
the following diagram commutes in N (〈Fa〉σ; b) :

(2.9)

F (fσ) F (f)σ

F (gσ) F (g)σ.

Fσ;f

F (ασ) (Fα)σ

Fσ;g

These data are subject to the same axioms of unit and composition preservation
(2.4) as a symmetric Cat-multifunctor, but we replace the symmetric group action
preservation axiom by the following four axioms.

• Unit permutation: Let n ≥ 0, 〈a〉 ∈ Ob(M)n and b ∈ Ob(M), then

(2.10) Fidn,〈a〉,b = 1F .

• Product permutation: This axiom expresses the coherence of the natural
isomorphisms Fσ, for varying σ, with respect to the symmetric group action.
Let n ≥ 0, 〈a〉 ∈ Ob(M)n, b ∈ Ob(M) and σ, τ ∈ Σn. Then, the following
equality of pasting diagrams holds.
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M(〈a〉; b) N (〈Fa〉;Fb) M(〈a〉; b) N (〈Fa〉;Fb)

M(〈a〉σ; b) N (〈Fa〉σ;Fb) =

M(〈a〉στ ; b) N (〈Fa〉στ ;Fb) M(〈a〉στ ; b) N (〈Fa〉στ ;Fb).

F

σ σ

F

στ στ
F

τ τ

F F

Fσ

Fτ

Fστ

Thus, for every 1-cell f ∈ Ob(M(〈a〉; b)), the following diagram of 2-cells
commutes in N (〈Fa〉;Fb):

(2.11)

F (fσ)τ

F (fστ) F (f)στ.

(Fσ;f )τFτ;fσ

Fστ;f

• Top equivariance: For every c ∈ Ob(M), n ≥ 0, 〈b〉 = 〈bj〉nj=1 ∈

Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n, and 〈aj〉 = 〈aj,i〉
kj
i=1 ∈ Ob(M)kj for

1 ≤ j ≤ n and 1 ≤ i ≤ n, and σ ∈ Σn, the following two pasting diagrams
are equal.

M(〈b〉; c) ×
∏n

j=1 M(〈aj〉; bj ) N (〈Fb〉;Fc) ×
∏n

j=1(〈Faj〉;Fbj)

M(〈〈aj〉〉
n
j=1; c) N (〈〈Faj〉〉

n
j=1;Fc)

M(〈〈aσ(j)〉〉
n
j=1 ; c) N (〈〈Faσ(j)〉〉

n
j=1 ;Fc)

‖

M(〈b〉; c) ×
∏n

j=1 M(〈aj〉; bj ) N (〈Fb〉;Fc) ×
∏n

j=1 N (〈Faj〉;Fbj)

M(〈b〉σ; c) ×
∏n

j=1 M(〈aσ(j)〉; bσ(j)) N (〈Fb〉σ;Fc) ×
∏n

j=1 N (〈Faσ(j)〉;Fbσ(j))

M(〈〈aσ(j)〉〉
n
j=1 ; c) N (〈〈Faσ(j)〉〉

n
j=1 ;Fc)

F×
∏

i F

γ γ

σ〈idkσ(j)
〉

F

σ〈idkσ(j)
〉

F

σ×σ−1

F×
∏

j F

σ×σ−1

F×
∏

j F

γ γ

F

Fσ×1

Fσ〈idkj
〉

Here σ〈idkσ(j)
〉 = σ〈idkσ(1)

, . . . , idkσ(n)〉. This means that for 1-cells f ∈
Ob(M(〈b〉; c)) and gj ∈ Ob(M(〈aj〉; bj)) for 1 ≤ j ≤ n,

(2.12) Fσ〈idkσ(j)
〉;γ(f ;〈gj〉) = γ

(

Fσ;f ; 〈1Fgσ(j)
〉nj=1

)

.

The domains and codomains of these pasting diagrams are equal by top
equivariance in M and N , and the fact that F preserves γ implies the com-
mutativity of the empty rectangles, see [Yau24].

• Bottom Equivariance: For every c ∈ Ob(M), n ≥ 0, 〈b〉 = 〈bj〉nj=1 ∈

Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n, and 〈aj〉 = 〈aj,i〉
kj
i=1 ∈ Ob(M)kj for
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1 ≤ j ≤ n and 1 ≤ i ≤ kj , and τj ∈ Σkj , the following two pasting
diagrams are equal.

M(〈b〉; c)×
∏n

j=1 M(〈aj〉; bj) N (〈Fb〉;Fc)×
∏n

j=1(〈Faj〉;Fbj)

M(〈〈aj〉〉
n
j=1; c) N (〈〈Faj〉〉

n
j=1;Fc)

M(〈〈aj〉τj〉
n
j=1; c) N (〈〈Faj〉τj〉

n
j=1;Fc)

‖

M(〈b〉; c)×
∏n

j=1 M(〈aj〉; bj) N (〈Fb〉;Fc)×
∏n

j=1 N (〈Faj〉;Fbj)

M(〈b〉; c)×
∏n

j=1 M(〈aj〉τj ; bj) N (〈Fb〉;Fc)×
∏n

j=1 N (〈〈Faj〉τj〉;Fbj)

M(〈〈aj〉τj〉
n
j=1; c) N (〈〈Faj〉τj〉

n
j=1;Fc)

F×
∏

j F

γ γ

idn〈τj〉

F

idn〈τj〉

F

id×
∏

j τj

F×
∏

j F

id×
∏

j τj

F×
∏

j F

γ γ

F

Fidn〈τi〉

1×
∏

j Fτj

This means that for 1-cells f : 〈b〉 → c and gj : 〈aj〉 → bj for 1 ≤ j ≤ n,

(2.13) Fidn〈τj〉;γ(f ;〈gj〉) = γ(1Ff ; 〈Fτj ;gj 〉)

as 2-cells in N (〈〈Faj〉τj〉;Fc). The domain and codomain of these pasting
diagrams are equal by bottom equivariance for M and N , and the preser-
vation of γ by F guarantees that the empty squares commute, see [Yau24].

Next we describe the horizontal composition of 1-cells in the 2-category Cat-
Multicatps.

Definition 2.14. ([Yau24] Def. 4.1.1) Let F : M → N , and G : N → Q be
pseudo symmetric Cat-multifunctors. We define the pseudo symmetric functor
GF : M → Q. On objects GF is the composite function GF : Ob(M) → Ob(Q).
The composite component functor is given for 〈a〉 ∈ Ob(M)n, and b ∈ Ob(M) by
the pasting

M(〈a〉; b) N (〈Fa〉; b) Q(〈GFa〉;GFb).F G

The symmetry isomorphisms are given for each σ ∈ Σn, 〈a〉 ∈ Ob(M), and b ∈
Ob(M) by

M(〈a〉; b) N (〈Fa〉;Fb) Q(〈GFa〉;GFb)

M(〈a〉σ; b) N (〈Fa〉σ; fb) Q(〈GFa〉σ;GFb).

σ

F

σ

G

σ

F G

Fσ,〈a〉,b Gσ,〈Fa〉,Fb
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That is, for each 1-cell f : 〈a〉 → b, the f component of GFσ is given by the com-
posite

(2.14)

G((Ff)σ)

GF (fσ) (GFf)σ.

Gσ;Ff

(GF )σ;f

G(Fσ;f )

Next we define the 2-cells of the category Cat-Multicatps.

Definition 2.15. ([Yau24] Def. 4.2.1) Suppose that F,G : M → N are pseudo
symmetric Cat-multifunctors. A pseudo symmetric Cat-multinatural transforma-
tion θ : F ⇒ G is the data of a component 1-cell θa : Fa→ Ga for each a ∈ Ob(M)
subject to axioms (2.5), (2.6) and the following extra axiom. For each n ≥ 0,
〈a〉 ∈ Ob(M)n, b ∈ Ob(M), object f ∈ Ob(M(〈a〉; b)), and permutation σ ∈ Σn,
the following arrow equality holds in the category N (〈Fa〉σ; b),

(2.15) γ (1θb ;Fσ;f ) = γ
(

Gσ;f ; 〈1θaσ(j)
〉
)

.

This can also be expressed diagrammatically as the equality of multicategorical
pasting diagrams

〈Fa〉σ G〈a〉σ 〈Fa〉σ 〈Ga〉σ

=

Fb Gb Fb Gb,

(Ff)σF (fσ)

〈θaσ(j)
〉

(Gf)σ

〈θaσ(j)
〉

F (fσ) (Gf)σG(fσ)

θb

θb

Fσ;f Gσ;f

where the diagrams are interpreted as in Remark 2.10, the squares commuting by
(2.5) and top and bottom equivariance for N , see [Yau24].

We define the vertical and horizontal composition of pseudo symmetric Cat-
multinatural transformations in the same way that we did for symmetric ones,
through diagrams (2.7) and (2.8).

It is a theorem of Yau [Yau24] that the data we have just defined gives the
structure of a 2-category, namely Cat-Multicatps. Definition 3.8 says that we
can describe this 2-category solely in terms of symmetric Cat-multifunctors and
symmetric Cat-multinatural transformations.

3. Equivalent definition of Pseudo Symmetry

To prove our first result we use finite products in the category Cat-Multicat.

Having just the 1-categorical structure in mind, the products in Cat-Multicat are
given in the following way. If M and N are two Cat-multicategories, then M×N
has objects Ob(M × N ) = Ob(M) × Ob(N ). Now, for n ≥ 0, 〈a〉 ∈ Ob(M)n,
〈c〉 ∈ Ob(N )n, b ∈ Ob(M), and d ∈ Ob(N ), we define

M×N (〈(a, c)〉; (b, d)) = M(〈a〉; b)×N (〈c〉; d).

The composition γ of M×N , as well as the Σ∗ action and the multicategorical
units, are defined componentwise. Next we define the pseudo symmetric multifunc-
tor ηM appearing in the statement of 1.1.
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Definition 3.1. Let M be a Cat-multicategory. We define the pseudo symmetric
Cat-multifunctor ηM : M → M×EΣ∗ which, when there is no room for confusion,
we will denote η. For an object a ∈ Ob(M) as η(a) = (a, ∗). We will abuse notation
and denote the object (a, ∗) of M× EΣ∗ as a.

For n ≥ 0, 〈a〉 ∈ Ob(M)n and b ∈ Ob(M) we need to define a functor
η : M(〈a〉; b) → M(〈a〉; b)× EΣn. For a 1-cell f : 〈a〉 → b, we define

η(f) = (f, idn) ∈ Ob(M(a; b)× EΣn).

Similarly, for a 2-cell α : f → g in M(〈a〉; b),

η(α) = (α, 1idn
) ∈ M(〈a〉; b)× EΣn((f, idn)), (g, idn).

Next, we define the components of the pseudo symmetry isomorphisms. For
σ, τ ∈ Σn we will denote from here on by Eτσ the unique arrow σ → τ in EΣn. For
σ ∈ Σn, 〈a〉 ∈ Ob(M)n, and b ∈ Ob(M) we need to define a natural isomorphism
ησ,〈a〉,b : (η ◦ σ) → (σ ◦ η) that fits in the following diagram

M(〈a〉; b) M(〈a〉; b)× EΣn

M(〈a〉σ, b) M(〈a〉σ; b)× EΣn.

η

σ σ×σ

η

ησ,〈a〉,b

∼=

The isomorphism ησ,〈a〉,b is defined for every 1-cell f : 〈a〉 → b as the 2-cell

ησ;f = (1fσ, E
σ
id) : (fσ, idn) → (fσ, σ).

Lemma 3.2. Let M be a Cat-multicategory, then ηM : M → M×EΣ∗ is pseudo
symmetric.

Proof . We start from a non symmetric multifunctor η : M → M × EΣ∗ that is
the identity on the first coordinate and the multicategorical unit in the second
coordinate. As a non symmetric multifunctor, η preserves units and γ composition.
We need to show that η is a pseudo symmetric Cat-multifunctor. The naturality of
ησ;f follows from the commutativity of the following diagram for any 2-cell α : f →
g:

(fσ, idn) (fσ, σ)

(gσ, idn) (gσ, σ).

(1fσ,E
σ
idn

)

(ασ,1idn ) (ασ,1σ)

(1gσ ,E
σ
idn

)

Next we focus on the coherence axioms. The unit permutation axiom (2.10) holds
since, for all 〈a〉 ∈ Ob(M)n, b ∈ Ob(M), and f : 〈a〉 → b,

ηidn;f = (1f idn
, Eidn

idn
) = (1f , 1idn

) = 1(f,idn) = 1η(f).

Let 〈a〉, b and f be as before, the product permutation axiom (2.11) holds again
by definition. Indeed, for τ, σ ∈ Σn, we have

ηστ ;f = (1fστ , E
στ
id ) = (1fστ , E

στ
τ ) ◦ (1fστ , E

τ
idn

) = (ησ;f τ) ◦ ητ ;fσ.
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For Top Equivariance (2.12), suppose that c ∈ Ob(M), n ≥ 1, 〈b〉 = 〈bj〉nj=1 ∈

Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n, 〈aj〉 = 〈aj,i〉
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, σ ∈ Σn,

f ∈ Ob(M(〈b〉; c)), and gj ∈ Ob(M(〈aj〉; bj)). We have that

γ(ησ;f ; 〈1i(gσ(j))〉) = γ((1fσ, E
σ
id); 〈(1gσ(j)

, 1idkσ(j)
)〉)

=

(

(γ(1fσ; 1gσ(j)
), γ

(

Eσid;E
idkσ(j)

idkσ(j)

))

=

(

1γ(f ;〈gσ(j)〉), E
σ〈idkσ(j)

〉

id〈idkσ(j)
〉

)

=

(

1γ(f ;〈gj〉)σ〈idkσ(j)
〉, E

σ〈idkσ(j)
〉

idk

)

= ησ〈idkσ(j)
〉;γ(f ;〈gj〉).

For Bottom Equivariance, let c, n, 〈b〉, kj for 1 ≤ j ≤ n, 〈aj〉 for 1 ≤ j ≤ n, f and
gj be as above and let τj ∈ Σkj for 1 ≤ j ≤ n. We also let k =

∑n

j=1 kj . Bottom

Equivariance (2.13) for i is

γ
(

1if ; 〈ητj ;gj 〉
)

= γ
(

(1f , 1idn
); 〈(1gjτj , E

τj
idkj

)〉
)

=
(

γ(1f ; 1gjτj ), 1idn
〈E

τj
idkj

〉
)

=
(

1γ(f ;〈gjτj〉), E
idn〈τj〉
idk

)

=
(

1γ(f ;〈gj〉)idn〈τj〉, E
idn〈τj〉
idk

)

= ηid〈τj〉,γ(f ;〈gj〉).

Thus, we conclude that η : M → M×EΣ∗ is a pseudo symmetricCat-multifunctor.
�

Recall that j : Cat-Multicat → Cat-Multicatps denotes the inclusion functor.
We are ready to present a proof of 1.1.

Theorem 3.3. Let M and N be a Cat-multicategories and F : M → N a pseudo
symmetric Cat-multifunctor. There exists a unique symmetric Cat-multifunctor
φ(F ) : M× EΣ∗ → N such that the following diagram commutes:

M× EΣ∗

M N .

jφ(F )

F

ηM

That is, F = jφ(F ) ◦ ηM in Cat-Multicatps.

Proof of Theorem 1.1. For uniqueness, suppose that φ(F ) : M × EΣ∗ → N is a
symmetric Cat-multifunctor satisfying F = (jφ(F )) ◦ η. We will abuse notation
and write jφ(F ) = φ(F ). We will prove there is a unique way of defining φ(F ). At
the level of the objects of the multicategory we must have φ(F )(a, ∗) = φ(F )◦η(a) =
F (a) for each a ∈ Ob(M). Next, we show that there is a unique way of defining
each component functor of φ(F ). For this let 〈a〉 ∈ Ob(M)n, b ∈ Ob(M), and
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consider the functor φ(F ) : M(〈a〉; b) × EΣn → N (〈Fa〉;Fb). If f : 〈a〉 → b is an
1-cell and σ ∈ Σn, we must have that

φ(F )(f, σ) = φ(F )((fσ−1, idn)σ)

= φ(F )((fσ−1, idn))σ

= φ(F ) ◦ η(fσ−1)σ

= F (fσ−1)σ,(3.1)

where in the second equality we used that φ(F ) is symmetric. So the values of
the component functors of φ(F ) on n-ary 1-cells are uniquely determined by F . In
exactly the same fashion, for 〈a〉, b and σ as before, f, g : 〈a〉 → b, and α : f → g a
2-cell,

(3.2) φ(F )(α, 1σ) = F (ασ−1)σ.

Finally, if f, σ are as before and τ ∈ Σn, we get that

φ(F )(1f , E
τ
σ) = φ(F )(1fσ−1σ,Eτσ

−1

id σ)

= φ(F )((1fσ−1 , Eτσ
−1

id ))σ

= φ(F )(ητσ−1 ;fτ−1)σ

= (φ(F ) ◦ ητσ−1;fτ−1)σ

= (Fτσ−1;fτ−1)σ.(3.3)

We have used the definition of composition of pseudo symmetric Cat-multifunctors
(2.14) where we see φ(F ) trivially as a pseudo symmetric functor. Since, for
〈a〉, b, f, g, α, σ, and τ as before we can write the morphism (α : f → g, Eτσ) in
M(〈a〉; b)×Σn as (1y, E

τ
σ) ◦ (f, 1σ) for and both φ(F )(1y , E

τ
σ) and φ(F )(f, 1σ) are

uniquely determined by F we conclude that the component functors of φ(F ) are
uniquely determined by F, and so we have proven the uniqueness of φ(F ).

Next we prove the existence of φ(F ). By uniqueness, we have no choice but to
define φ(F )(b, ∗) = Fb for any b ∈ Ob(M). Likewise, for 〈a〉 ∈ Ob(M)n and b ∈
Ob(M), uniqueness forces the definition of the component functor φ(F ) : M(〈a〉; b)×
Σn → N (〈Fa〉; b). For f : 〈a〉 → b and σ ∈ Σn φ(F )(f, σ) is defined by (3.1),
for α : f → g a 2-cell, we define φ(F )(α, 1σ) by (3.2) and for τ ∈ Σn we define
φ(F )(1f , E

τ
σ) by (3.3). First, we notice that for a 1-cell f : 〈a〉 → b such definition

is ambiguous for the identity arrow (1f , 1σ) since both (3.2) and (3.3) apply. How-
ever, φ(F ) is well defined in this case since F is a functor componentwise and so it
preserves identities. Explicitly,

F (1fσ
−1)σ = F (1fσ−1)σ = 1F (fσ−1)σ = 1F (fσ−1)σ,

and

(Fσσ−1 ,fσ−1)σ = Fidn,fσ−1σ = 1F (fσ−1)σ = 1F (fσ−1)σ.

So our definition is so far unambiguous and φ(F ) preserves identities. Next, we
go on to extend the definition of φ(F ) to the rest of the arrows. For α : f → g 2-cell
in M(〈a〉, b) and σ, τ in Σn, we define φ(F )(α,Eτσ) : F (fσ

−1)σ → F (gτ−1)τ by

φ(F )(α,Eτσ) =φ(F )(1g, E
τ
σ) ◦ φ(F )(α, 1σ)
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=φ(F )(α, 1τ ) ◦ φ(F )(1f , E
τ
σ).(3.4)

The last equality together with the preservation of identities already proven implies
that our definition is unambiguous. This equality holds since,

φ(F )(1g, E
τ
σ) ◦ φ(F )(α, 1σ) =

(

Fτσ−1;gτ−1

)

σ ◦ F (ασ−1)σ

=
(

Fτσ−1;gτ−1 ◦ F (ασ−1)
)

σ

=
(

F (ατ−1)τσ−1 ◦ Fτσ−1;fτ−1

)

σ

= F (ατ−1)τ ◦
(

Fτσ−1;fτ−1

)

σ

= φ(F )(α, 1τ ) ◦ φ(F )(1f , E
τ
σ).

The third equality holds since the commutativity of the following diagram is an
instance of the pseudo symmetry naturality coherence axiom for F (2.9). Explicitly,

(3.5)

F (fτ−1τσ−1) F (fτ−1)τσ−1

F (gτ−1τσ−1) F (gτ−1)τσ−1.

F
τσ−1;fτ−1

F (ατ−1τσ−1) (Fατ−1)τσ−1

F
τσ−1;gτ−1

Next, we check that the defined assignments give a functor φ(F ) : M(〈a〉; b) ×
EΣn → N (〈Fa〉; b). The fact that φ(F ) preserves identities was already proven.
We prove functoriality in the first variable first. For f : 〈a〉 → b 1-cell, σ, τ, and ρ
in Σn,

φ(F )(1f , E
ρ
τ ) ◦ φ(F )(1f , E

τ
σ) =

(

Fρτ−1;fρ−1τ
)

◦
(

Fτσ−1;fτ−1σ
)

=
((

Fρτ−1;fρ−1

)

τσ−1 ◦ Fτσ−1;fτ−1

)

σ

=
(

Fρσ−1 ;fρ−1

)

σ

= φ(F )(1f , E
ρ
σ).(3.6)

Here the third equality holds by (2.11), which implies the commutativity of the
following diagram:

(3.7)

F (fρ−1ρτ−1)τσ−1

F (fρ−1ρτ−1τσ−1) F (fρ−1)ρτ−1τσ−1.

(F
ρτ−1;fρ−1 )τσ

−1F
τσ−1;fρ−1ρτ−1

F
ρτ−1τσ−1;fρ−1

On the other hand, if α : f → g and β : g → h are 2-cells in M(〈a〉; b), and σ ∈ Σn
we have that

φ(F )(β, 1σ) ◦ φ(F )(α, 1σ) = φ(F )(βα, 1σ).(3.8)

The functoriality of φ(F ) follows from a straightforward argument by eqs. (3.6)
and (3.8) together with the exchange property (3.4).

The next step is to prove that the component functors give rise to a symmetric
Cat-multifunctor φ(F ) : M × EΣ∗ → N . First, notice that φ(F ) preserves units

since, for a ∈ Ob(M) φ(F )(1a, id1) = F (1aid
−1
1 )id1 = F (1a) = 1Fa, since F itself

preserves units. Next we prove that φ(F ) preserves the Σn-action. For n ≥ 0,
〈a〉 ∈ Ob(M)n, b ∈ Ob(M), and σ ∈ Σn, we show that the following diagram
commutes in Cat :
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M(〈a〉; b)× EΣn
φ(F )

//

σ

��

N (〈Fa〉;Fb)

σ

��

M(〈aj〉σ; b)× EΣn
φ(F )

// N (〈Fa〉σ;Fb).

For this we don’t need any of the pseudo symmetry axioms for F. For 1-cells
(f : 〈a〉 → b, τ) of M(〈a〉; b)× EΣn,

φ(F )(f, τ)σ = (F (fτ−1)τ)σ

= F (fτ−1)τσ

= F (fσ(τσ)−1)τσ

= φ(F )((fσ, τσ)))

= φ(F )((f, τ)σ).

A similar calculation works for 2-cells of the form (α : f → g, 1τ) inM(〈a〉; b)×EΣn.
For morphisms of the form (1f , E

ρ
τ ) in M(〈a〉; b)× EΣn,

(φ(F )(1f , E
ρ
τ ))σ = (Fρτ−1;fρ−1τ)σ

= Fρτ−1;fρ−1(τσ)

= Fρσ(τσ)−1 ;fσ(ρσ)−1(τσ)

= φ(F )(1fσ , E
ρσ
τσ)

= φ(F )((1f , E
ρ
τ )σ).

By functoriality of φ(F ) and σ we conclude that φ(F ) preserves the action of the
symmetric group.

The only step we are missing to finish proving that φ(F ) defines aCat-multifunctor
is the preservation of γ. Let c ∈ Ob(M), n ≥ 0, 〈b〉 ∈ Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n,

〈aj〉 = 〈aj,i〉
kj
i=1 for 1 ≤ j ≤ n. Set k =

∑n

j=1 kj . As usual 〈a〉 = 〈aj〉 = 〈〈aj,i〉
kj
i=1〉

n
j=1

denotes the concatenation of the aj ’s. We will prove that the following square is
commutative:

(3.9)

M(〈b〉; c) × EΣn ×
∏n

j=1 M(〈aj〉; bj) × EΣkj
N (〈Fb〉;Fc) ×

∏n
j=1 N (〈Faj〉;Fbj)

M(〈a〉; c) × E(Σk) N (〈Fa〉;Fc).

φ(F )×
∏

φ(F )

γ γ

φ(F )

The commutativity of this diagram at the level of 1-cells will follow from top
and bottom equivariance for M and Σ∗, as well as the fact that F preserves γ. Let
f : 〈b〉 → c, σ ∈ Σn, and gj : 〈aj〉 → bj and τj ∈ Σkj for 1 ≤ j ≤ n. We have that

γ(φ(F )(f, σ), 〈φ(F )(gj , τj)〉) = γ(F (fσ−1)σ, 〈F (gjτ
−1
j )τj〉)

= γ
(

(F (fσ−1),
〈

F
(

gσ−1(j)τ
−1
σ−1(j)

)〉)

σ〈τj〉

= F
(

γ
(

fσ−1,
〈

gσ−1(j)τ
−1
σ−1(j)

〉))

σ〈τj〉

= F
(

γ(f, 〈gj〉)(σ〈τj〉)
−1

)

σ〈τj〉
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= φ(F )(γ(f, 〈gj〉), σ〈τj〉)

= φ(F )(γ((f, σ), 〈gj , τj〉)).

We have proven that our diagram is commutative at the level of 1-cells. For the
morphisms we will consider again morphisms that change the first variable only
and morphisms that change the second variable only separately.

For 2-cells that change the first variable only, the commutativity of our diagram
follows in the same way as it did for 1-cells. We consider two cases for 2-cells
that change the second variable. For 2-cells of the form ((1f , E

τ
σ), 〈1gj , 1ρj 〉) where

f : 〈b〉 → c, σ, τ ∈ Σn, and gj ∈ Ob(M(〈aj〉; bj)) and ρj ∈ Σkj for 1 ≤ j ≤ n, we
have that

γ
(

φ(F )(1f , E
τ
σ)
〈

φ(F )(1gj , 1ρj )
〉)

=γ
(

(Fτσ−1;fτ−1)σ,
〈

1F (gjρ
−1
j )ρj

〉)

=γ

(

Fτσ−1;fτ−1,
〈

1
F
(

g
σ−1(j)ρ

−1

σ−1(j)

)

〉

)

σ〈ρj〉

=F
τσ−1

〈

idk
σ−1(j)

〉

;γ
(

fτ−1
〈

g
τ−1(j)ρ

−1

τ−1(j)

〉
)σ〈ρj〉

=Fτ〈ρj〉(σ〈ρj〉)−1;γ(f,〈gj〉)(τ〈ρj〉)−1σ〈ρj〉

=φ(F )(1γ(f,〈gj〉), E
τ〈ρj〉
σ〈ρj〉

)

=φ(F )(γ(1f , 〈1gj 〉), γ(E
τ
σ , 〈1ρj 〉)).

The above equalities follow from our definitions, top and bottom equivariance in
M,N , and EΣ∗ except the third equality which follows from top equivariance
for F (2.12). Next, let’s consider two cells of the form ((1f , 1σ), 〈1gj , E

νj
ρj 〉) where

f : 〈b〉 → c, σ ∈ Σn, and gj ∈ Ob(M(〈aj〉; bj)) and ρj , νj ∈ Σkj for 1 ≤ j ≤ n. We
get that

γ
(

φ(F )(1f , 1σ), φ(F )
〈

(1hj
, Eνjρj )

〉

)

=γ
(

1F (fσ−1)σ,
(

Fνjρ−1
j ;gjν

−1
j

)

ρj

)

=γ

(

1F (fσ−1),
〈

Fν
σ−1(j)ρ

−1

σ−1(j)
;g

σ−1(j)ν
−1

σ−1(j)

〉

)

σ〈ρj〉

=F
idn

〈

ν
σ−1(j)ρ

−1

σ−1(j)

〉

;γ
(

fσ−1,

〈

g
σ−1(j)ν

−1

σ−1(j)

〉
)σ〈ρj〉

=Fσ〈νj〉(σ〈ρj〉)−1;γ(f,〈gj〉)(ρ〈νj〉)−1σ〈ρj〉

=φ(F )
(

1γ(f,〈gj〉),
〈

E
σ〈νj〉
σ〈ρj〉

〉)

=φ(F )
(

γ
(

(1f , 1σ),
〈(

1gj , E
νj
ρj

)〉))

.

The third equality above follows from the bottom equivariance axiom for F (2.13)
and the rest by our definitions as well as top and bottom equivariance for M,N ,

and EΣ∗.
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By functoriality of γ and φ(F ), and since every morphism in the source category
can be written as a composite of arrows for which we already proved the commu-
tativity of (3.9), we can conclude that the square (3.9) is commutative.

We are almost done, we just have to prove that our definition of φ(F ) gives us
F = φ(F )◦ η in Cat-Multicatps. This is clear for objects of the multicategory M.
For each n ≥ 0, 〈a〉 ∈ Ob(M)n, b ∈ Ob(M), and f : 〈a〉 → b,

φ(F ) ◦ η(f) = φ(F )(f, idn) = F (f id−1
n )idn = F (f).

Similarly for α : f → g a 2-cell in M(〈a〉; b). Finally, we just need to prove that
(φ(F ) ◦ i)σ,〈ai〉,b = Fσ,〈ai〉, c for any σ ∈ Σn. Let f : 〈a〉 → b be a 1-cell. Since φ(F )
is symmetric,

(φ(F )η)σ;f = φ(F )(ησ;f ) = φ(F )(1fσ , Eidσ ) = Fσ(id)−1;fσσ−1 = Fσ;f

We have proven that jφ(F ) ◦ η = F . This finishes our proof. �

Similarly, pseudo symmetric Cat-multinatural transformations between F and
G correspond to symmetric Cat-multinatural transformations between φ(F ) and
φ(G).

Lemma 3.4. Let M,N be Cat-multicategories with F,G : M → N pseudo sym-
metric Cat-multifunctors and θ : F → G a pseudo symmetric Cat-multinatural
transformation. There exists a unique symmetric Cat-multinatural transformation
φ(θ) : φ(F ) → φ(G) such that φ(θ) ∗ 1ηM = θ in Cat-Multicatps. That is, the
following pasting diagram equality holds in Cat-Multicatps :

M N M N

=

M× EΣ∗ M× EΣ∗.

F

GηM

F

ηMφ(G)

φ(F )

φ(G)

θ

φ(θ)

Proof . We prove uniqueness first. Suppose φ(θ) is a symmetric Cat-multinatural
transformation φ(θ) : φ(F ) → φ(G) such that φ(θ)∗1η = θ. Any object of M×EΣ∗

takes the form (a, ∗) for some object a of M, with i(a) = (a, ∗). By definition,

θa = γ(φ(θ)ηa, φ(F )((1η)a)) = γ(φ(θ)ηa, 1Fa)) = φ(θ)ηa.

Since all objects of the Cat-multifunctor M × EΣ∗ are of the form ηa for some
object a of M, this is the only possible way of defining such Cat-multinatural
transformation φ(θ). Next, we check that by defining φ(θ)(a,∗) = θa for a ∈ Ob(M),
we in fact get a symmetric Cat-multinatural transformation φ(θ) : φ(F ) → φ(G).
Let n ≥ 0, 〈a〉 ∈ Ob(M)n, b ∈ (Ob(M)n), f : 〈a〉 → b, and σ ∈ Σn, then

γ(φ(G)(f, σ); 〈φ(θ)(aj ,∗)〉) = γ
(

G(fσ−1)σ;
〈

θaj
〉)

= γ
(

G(fσ−1);
〈

θa
σ−1(j)

〉)

σ

= γ(θb;F (fσ
−1))σ

= γ(θb;F (fσ
−1)σ)

= γ
(

φ(θ)(b,∗), φ(F )(f, σ)
)

Where we have used top and bottom equivariance, as well as theCat-multinaturality
of θ. Now we need to prove Cat-multinaturality of φ(θ) for 2-cells. As before, the
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case where the 2-cell changes just the first variable is similar to what was done for
1-cells. Now, if 〈a〉, b, f are as before and Eτσ is a morphism in EΣn, (1f , E

τ
σ) is a

morphism in M(〈a〉; b)× EΣn, and

γ
(

φ(G)(1f , E
τ
σ);

〈

1φ(θ)(aj,∗)

〉)

= γ
(

(Gτσ−1;fτ−1)σ; 〈1θaj
〉
)

= γ
(

Gτσ−1;fτ−1;
〈

1θa
σ−1(j)

〉)

σ

= γ
(

1θb ;Fτσ−1;fτ−1

)

σ

= γ
(

1φ(θ)(b,∗) ;φ(F )(1f , E
τ
σ)
)

.

In the third equality we have used pseudo symmetric Cat-multinaturality for θ.
In conclusion, by componentwise functoriality of γ, φ(F ) and φ(G) we conclude
that Cat-multinaturality holds for φ(θ) at the 2-cell level finishing the proof of the
lemma. �

Furthermore, Theorem 3.3 and Lemma 3.4 together give the following isomor-
phism.

Corollary 3.5. If M,N are Cat multicategories, then there is an isomorphism of
small categories

Cat-Multicatps(M,N ) ∼= Cat-Multicat(M× EΣ∗,N ).

Proof . Recalling the definitions from the two previous results, we define

(3.10) φ : Cat-Multicatps(M,N ) → Cat-Multicat(M× EΣ∗,M)

for pseudo symmetric Cat-multifunctors as in Theorem 3.3 and for pseudo sym-
metric Cat-multinatural transformations as in Lemma 3.4.

It is immediate from the definitions that φ is a functor. Indeed, if α : F →
G and β : G → H are pseudo symmetric Cat-multinatural transformations with
F,G,H : M → N

φ(β ∗ α)(c,∗) = (β ∗ α)c = γ(βc, αc) = γ(φ(β)(c,∗), φ(α)(c,∗)) = (φ(β) ∗ φ(α))(c,∗)

We can define the inverse of φ, η∗, as the composite

(3.11)

Cat-Multicat(M× EΣ∗,N ) Cat-Multicatps(M× EΣ∗,N )

Cat-Multicatps(M,N ).
η∗

j

η∗M

Finally, the existence part of Theorem 3.3 and Lemma 3.4, implies that η∗ ◦ φ is
the identity of Cat-Multicatps(M,N ), while the uniqueness part of both results
implies that φ ◦ η∗ is the identity of Cat-Multicat(M× EΣ∗,N ). �

The two previous results hint at the existence of a 2-adjunction between the 2-
inclusion j : Cat-Multicat → Cat-Multicatps and the 2-functor which we define
next.

Definition 3.6. We define the 2-functor ψ : Cat-Multicatps → Cat-Multicat

as follows. For a Cat-multicategory M, ψM = M × EΣ∗. For M,N Cat-
multicategories, we define the component functor ψ as the composite
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Cat-Multicatps(M,N ) Cat-Multicatps(M,N × EΣ∗)

Cat-Multicat(M× EΣ∗,N × Σ∗).

ηN ∗

ψ
φ

Thus, by Theorem 3.3 if F : M → N is a pseudo symmetric Cat-multifunctor,
then ψF : M×EΣ∗ → N ×EΣ∗ is the unique symmetric Cat-multifunctor which
makes the diagram

(3.12)

M M× EΣ∗

N N × EΣ∗

ηM

F jψF

ηN

commute in Cat-Multicatps. Similarly, by Lemma 3.4, for θ : F → G a pseudo
symmetric Cat-multinatural transformation between F,G : M → N pseudo sym-
metricCat-multifunctors, ψθ : ψF → ψG is the unique symmetricCat-multinatural
transformation such that the equality of pasting diagrams

(3.13)

M M× EΣ∗ M M× EΣ∗

=

N N × EΣ∗ N N × EΣ∗

GF

ηM

jψF

ηM

F jψGjψF

ηN ηN

θ jψθ

holds in Cat-Multicatps.

Theorem 3.7. There is a 2-adjunction

Cat-Multicatps ⊥ Cat-Multicat

ψ

j

where j is the inclusion 2-functor.

Proof . Following Corollary 3.5, we define the unit of the adjunction as the strict
2-natural transformation η : 1Cat-Multicatps → jψ having component ηM at a Cat-
multicategoryM.We also define the counit of the adjunction π : ψj → 1Cat-Multicat

as having component at a Cat-multicategory M the projection πM : M× EΣ∗ →
M.

The fact that η defines a strict 2-natural transformation follows directly from
(3.12) and (3.13). To prove that the data of π defines a strict 2-natural transfor-
mation we need to prove that given F : M → N symmetric Cat-multifunctor, the
following diagram commutes:

M× EΣ∗ M

N × EΣ∗ N .

πM

ψjF F

πN
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Indeed, we prove that ψjF = F × 1EΣ∗ . By (3.12), it suffices to show that the
following diagram commutes in Cat-Multicatps:

(3.14)

M M× EΣ∗

N N × EΣ∗.

ηM

jF j(F×1)

ηN

It is clear that this diagram commutes at the level of objects, 1-cells, and 2-cells
of the multicategory. The pseudo symmetry isomorphisms of both composites also
agree. Indeed, for f : 〈a〉 → b a 1-cell of M and σ ∈ Σn, by (2.14), we get that

(j(F × 1)ηM)σ;f =j(F × 1)σ;ηM(f) ◦ j(F × 1)(ηMσ;f )

= (1(Ff)σ, 1σ) ◦ (1(Ff)σ, E
σ
id)

= (1(Ff)σ, E
σ
id) ◦ (1(Ff)σ, 1σ)

= ηN σ;Ff ◦ ηN (jFσ;f )

= (ηN ◦ jF )σ;f .

To finish proving the 2-naturality of πM, we need to prove that given M,N
Cat-multicategories, F,G : M → N Cat-multifunctors and a Cat-multinatural
transformation θ : F → G, the following equality of pasting diagrams holds in
Cat-Multicat:

M× EΣ∗ M M× EΣ∗ M

=

N × EΣ∗ N N × EΣ∗ N .

j(G×1)j(F×1)

πM

G

πM

j(F×1) GF

πN πN

ψjθ θ

In turn, the last equality of pasting diagrams holds since ψjθ = j(θ × 1). To
see this, by (3.13), we must show the following equality of pasting diagrams in
Cat-Multicatps :

(3.15)

M M× EΣ∗ M M× EΣ∗

=

N N × EΣ∗ N N × EΣ∗.

jGjF

ηM

j(G×1)

ηM

jF j(G×1)j(F×1)

ηN

ηN

jθ j(θ×1)

To check that this equality holds let a ∈ Ob(M). We get, by (2.8), that

(1ηN ∗ jθ)a = γ
(

1ηN (jGa); ηN (θa)
)

= γ ((1Ga, 1id); (θa, 1id))

= γ ((θa, 1id); (1Fa, 1id))

= γ
(

j(θ × 1)ηN (a); j(F × 1)(1ηM(a))
)

= (j(θ × 1) ∗ ηM)a.

Thus, η and π are strict 2-natural transformations and we just need to prove that
they satisfy the triangle identities. To prove that the identity (1j ∗ π)(η ∗ 1j) = 1j
holds we need to prove that for M a Cat-multicategory the diagram
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M× EΣ∗

M M

jπMηM

1M

commutes in Cat-Multicatps. This is clear at the level of objects, n-ary 1-cells
and n-ary 2-cells. The pseudo symmetry isomorphisms of both pseudo symmetric
Cat-multifunctors also agree since, for f : 〈a〉 → b an n-ary 1-cell ofM and σ ∈ Σn,
we obtain, by (2.14),

((jπM) ◦ ηM)σ;f = (jπM)σ;ηM(f) ◦ jπM(ηMσ;f ) = 1fσ = 1Mσ;f .

The other triangle identity is (π ∗ 1ψ)(1ψ ∗ η) = 1ψ. To check it, we must prove
that, given a Cat-multicategory M, the composite

M× EΣ∗ M× EΣ∗ × EΣ∗ M× EΣ∗
ψηM πM×EΣ∗

agrees with 1M×EΣ∗ . This holds since, if ∆: EΣ∗ → EΣ∗ × EΣ∗ denotes the
diagonal map, then ψ(ηM) = 1M×∆. To see this, notice that by (3.12) all we need
is to prove that the following diagram is commutative:

(3.16)

M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗.

ηM

ηM j(1×∆)

ηM×EΣ∗

Now, the previous diagram is evidently commutative at the level of objects, 1-
cells, and 2-cells. The diagram also commutes at the level of pseudo symmetry
isomorphisms since, for f : 〈a〉 → b an n-ary 1-cell in M and σ ∈ Σn,

(ηM×EΣ∗ ◦ ηM)σ;f = ηM×EΣ∗σ;ηM(f) ◦ ηM×EΣ∗(ηMσ;f )

= (1fσ, 1σ, E
σ
id) ◦ (1fσ, E

σ
id, 1id)

= (1fσ, 1σ, 1σ) ◦ (1fσ, E
σ
id, E

σ
id)

= j(1 ×∆)σ;ηM(f) ◦ j(1×∆)(ηMσ;f )

= (j(1×∆) ◦ ηM)σ;f .

We conclude that the triangle identities are satisfied and thus we get the desired
2-adjunction. �

We can use this 2-adjunction to describe the 2-category Cat-Multicatps in
terms of symmetric Cat-multifunctors and symmetric Cat-multinatural transfor-
mations alone, thus upgrading the functors φ from Corollary 3.5 to an isomorphism
of 2-categories.

Definition 3.8. The 2-category D has Cat-multicategories as objects. For M,N
Cat-multicategories, the category of morphisms between M and N is

D(M,N ) = Cat-Multicat(M× EΣ∗,N ).

In particular, vertical composition of 2-cells is defined as in Cat-Multicat. For
F : M × EΣ∗ → N and G : N × EΣ∗ → Q symmetric Cat-multifunctors, the
composition G ◦ F is defined as the composite

M× EΣ∗ M× EΣ∗ × EΣ∗ N × EΣ∗ Q
1×∆ F×1 G
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in Cat-Multicat. Similarly, for F, J : M × EΣ∗ → N , G,K : N × EΣ∗ → Q
symmetric Cat-multifunctors and θ : F → J, ζ : G → K Cat-multinatural trans-
formations, ζ ∗ θ is defined as the pasting

M× EΣ∗ M× EΣ∗ × EΣ∗ N × EΣ∗ Q
1×∆

F×1

J×1

G

K

θ×1 ζ

in Cat-Multicat.

The previous definition makes D into a 2-category and the functors φ, and η∗

from Corollary 3.5 into the components of isomorphisms of 2-categories.

Theorem 3.9. The data of the previous definition defines a 2-category D isomor-
phic to Cat-Multicatps.

Proof . The (horizontal) composition functors are defined so that φ and η∗ become
the componentwise functors of a 2-category isomorphism between D and Cat-
Multicatps. More precisely, for M,N and Q Cat-multicategories, we will prove
that the D composition functor defined, ◦′ : D(N ,Q) × D(M,N ) → D(M,Q),
makes the following diagram commute, where ◦ denotes the horizontal composition
functor of Cat-Multicatps :
(3.17)

D(N ,Q)×D(M,N ) D(M,Q)

Cat-Multicat
ps(N ,Q)×Cat-Multicat

ps(M,N ) Cat-Multicat
ps(M,Q).

◦′

η∗×η∗

◦

φ

Let G : N × Q and F : M × EΣ∗ → N be symmetric Cat-multifunctors. The
commutativity of (3.17) for (G,F ) reduces to the commutativity of the following
diagram by Theorem 3.3:

M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗

N N × EΣ∗ Q.

ηM

ηM j(1×∆)

ηM×EΣ∗

jF j(F×1)

ηN jG

This diagram in turn is commutative by (3.14) and (3.16). Now, if F,G are as
before, J : M×EΣ∗ and K : N ×EΣ∗ → Q are symmetric Cat-multifunctors, and
θ : F → J, ζ : G → K are Cat-multinatural transformations, by Lemma 3.4, the
commutativity of (3.17) for (ζ, θ) reduces to the equality of pasting diagrams:
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M M× EΣ∗ M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗ = M× EΣ∗ M× EΣ∗ × EΣ∗

N N × EΣ∗ N N × EΣ∗

Q Q.

ηM

ηM j(1×∆) ηM

ηM

j(1×∆)

ηM×EΣ∗

jF j(F×1) j(J×1)

ηM×EΣ∗

jF jJ j(J×1)

ηN

jG jK

ηN

jG jK

j(θ×1) jθ

jζ jζ

This equality holds by (3.15) and makes implicit use of (3.14) and (3.16). We
can thus define φ : Cat-Multicatps → D in objects as the identity map, and do
the same for η∗ : D → Cat-Multicatps, with the component functors given for
M and N multicategories by (3.10) and (3.11) respectively. By (3.17) and the
fact that φ and η∗ are componentwise isomorphisms, φ and η preserve vertical
composition of 2-cells and horizontal composition of 1-cells and 2-cells. The fact
that Cat-Multicatps is a 2-category implies that D is a 2-category. This further
turns φ and η∗ into isomorphisms of 2-categories. �

4. Applications to inverse Ktheory

We use our understanding of pseudo symmetric multifunctors to show that they
preserve En-algebras for n = 1, 2, 3, ...,∞. First we define En Cat-operads.

Definition 4.1. For n = 1, ...,∞, an En Cat-operad is a Cat-operad that becomes
a topologicalEn-operad (in the sense of [May72]) after applying the classifying space
functor. A topological En operad is one that has the same Σ-equivariant homotopy
type as the little n-cubes operad.

Example 4.2. An example of an E∞ Cat-operad is EΣ∗. There are also examples
of En Cat-operads for each n = 1, 2, . . . in [Ber96] and [BFSV03], which further-
more have a free action of the symmetric group (on objects).

Definition 4.3. Let M be a Cat-multicategory and O a Cat-operad. An algebra
(respectively a pseudo symmetric algebra) in M overO is a symmetric (respectively
pseudo symmetric)Cat-multifunctorO → M. For n ∈ {1, 2, . . . ,∞}, anEn algebra
(respectively a pseudo symmetric En algebra) in M is an algebra (respectively a
pseudo symmetric algebra) over an En operad.

Remark 4.4. If O is Cat-operad and M is a Cat-multicategory, the pseudo
symmetric algebras over O agree with symmetric algebras over the operad O ×
EΣ∗. For example, while algebras over the commutative operad {∗} in M are the
commutative monoids inM, pseudo symmetric algebras over {∗} inM are precisely
algebras over the Barratt-Eccles operad and thus, E∞-algebras. Similarly, pseudo
symmetric algebras over the E∞ Cat-operad EΣ∗, which are defined in [Yau24] as
pseudo symmetric E∞ algebras in M, are algebras over EΣ∗ ×EΣ∗ = E(Σ∗ ×Σ∗)
which is still an E∞ Cat-operad, and thus, they are still E∞ algebras in the sense
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defined above. If we let O be a symmetric Cat-operad with a free action of the
symmetric group, O×EΣ∗ is componentwise Σ-equivariantly homotopy equivalent
to O (after taking nerves), that is, for each n ≥ 0, the projection O(n) × EΣn →
O(n) induces a Σn equivariant homotopy equivalence on nerves. Thus, we have the
following result.

Lemma 4.5. .

(1) Let O be a (Σ-free) En Cat-operad. Then O×EΣ∗ is an En Cat-operad.
(2) Pseudo symmetric En algebras over (Σ-free) En Cat-operads are En alge-

bras for n = 1, 2, . . . ,∞.

We remind the reader that freeness is not a serious restriction since there are En
operads in Cat, like those in [Ber96] and [BFSV03] which are free. As a corollary
we conclude that pseudo symmetric Cat-multifunctors preserve En algebras.

Corollary 4.6. Let M and N be Cat-multicategories and F : M → N be a pseudo
symmetric Cat-multifunctor, then:

(1) F sends commutative monoids in M to E∞ algebras in N .

(2) F sends En-algebras (parameterized by free Cat-operads), to En-algebras.

We conclude our paper by applying our understanding of pseudo symmetric
Cat-multifunctors to multifunctorial inverseK-theory. In [JY22], Johnson and Yau
define Mandell’s inverseK-theory multifunctor P as well as theCat-multicategories
that are its domain (Γ-categories) and target (permutative categories). Yau proves
in [Yau24] that P is pseudo symmetric. We refer the interested reader [Yau24] of
which the following theorem is one of the main results.

Theorem 4.7. [Yau24] Mandell’s inverse K-theory functor is a pseudo symmetric
Cat-multifunctor P : Γ-Cat → PermCatsg.

As a consequence, P sends commutative monoids to E∞ algebras and preserves
En algebras, as was stated in Corollary 1.2.
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