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0.1 hello

We hesitate to begin with a platitude, but let’s – you and we – aban-
don any hesitations and embrace this thing wholeheartedly. In the
spirit of earnest companionship and mutual trust, here’s the platitude:
the best and only fun way to learn mathematics is by doing mathe-
matics. So let’s do some math problems. Really. The sun is shining,
and the wind is just right. Here we go!

First Activity

(0.1.1) Activity . a. Add two odd numbers together. Any
two. Just pick your favorite two odd numbers and add
them together.

b. All right, now, is the result even or odd? Try it again.
Pick another pair of odd numbers (your, uhm, second
favorite). Add them together and see whether the sum
is even or odd.

c. Keep going. Five more times! (You didn’t know this
book was going to be so demanding. . . We pulled you
in with all that talk about companionship and sun shin-
ing, then put you straight to work adding all our odd
numbers together.)

d. Can you predict whether the result is even or odd when
you add two odd numbers? And now – here’s the amaz-
ing part, the point of entire book –can you explain why
this happens?

In math when we observe a phenomenon that seems like it always
happens, the first thing we do is try to describe it very precisely. Imag-
ine a physician describing a really difficult case to a colleague. The
description is probably going to be a bit more detailed than, say, "Hey
buddy, this guy over here’s got a stomach ache." It’s probably going
to have some technical vocabulary in it. When we’re doing mathe-
matics this precise description of something that always happens is
called a theorem. Let’s try it out!
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First Theorem

(0.1.2) Theorem (First Theorem). The sum of two odd num-
bers is an even number.

It’s concise. It seems correct. It says exactly what we want. It’s per-
fect! (Well, except that it doesn’t have a proof yet.) Notice how much
information is packed into this little theorem. It tells us about adding
any odd numbers! That’s an infinite number of numbers!

Like with any technical description, you could spend a fair amount
of time explaining Theorem 0.1.2 to someone who wasn’t at all famil-
iar with the terminology. Think about how you might introduce even
and odd numbers to, say, a class of first graders. Think about how
you might tell them about what a sum is. We’ll get to addition

in Chapter 3 and
talk more about even
and odd in Chapter
5.

Let’s go back to our two doctors for a moment. They’re still there,
huddled in the hallway, poring over their charts. When they’re talk-
ing to each other, they’re using the highly technical language of their
profession. But when the doctor returns to her patient, she tries to ex-
plain the diagnosis in colloquial language. That’s your job as a math
teacher. You must understand the technical language of the subject in
order to know what is going on well yourself. And you also must be
able to translate it for your audience.

We will be developing language carefully in this book. We’re not
going to shy away from technical (and slightly terrifying) math words
and symbols to serve precise, adult-level understanding. But we will
also at times address how things might look and sound in the class-
room.

Just a a doctors tries to find an underlying cause for symptoms they
see, we try to give an explanation as to why our observations occur.
This explanation always follows the statement of a theorem and goes
by a lot of different names. Sometimes it’s called your reasoning or
rationale. It’s your argument or justification. Most commonly, among
mathematicians, it’s called a proof. We will use all of these words for
reasoning , but when the time comes to set the reasoning aside we’ll
call it a proof.

When you write down a theorem you’re saying that something is
true for everyone in the universe forever. We claim that no matter
who adds two odd numbers, no matter when they do it, no matter
which numbers they choose to add, the result will be even. That’s
pretty amazing! But if we’re going to make such a grandiose claim,
we’d better be sure.

The good news here is that there’s no one correct way to write a
proof. The bad news is that you probably have little if any experience
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in writing a proof, except perhaps in high-school geometry when they
seemed like a strange exercise in writing in two columns. An analogy
to keep in mind is in explaining to a kid who incessantly asks “why?”
For an everyday example, suppose you told some young child that
you were tired, and she asked why. You might say it was because
you were coughing through the night, which interrupted your sleep.
She could ask why again. You were coughing because you had gotten
sick. You had gotten sick because you had gone out in cold weather
without enough clothes on. That was because the weatherman didn’t
forecast a sudden change in weather, which in turn was because of
some difficulties for certain storm fronts to be predicted. In mathe-
matics, we usually put all of these “whys” in order: “Because it is
difficult to predict certain storm fronts, the weatherman didn’t fore-
cast the the change in weather. That meant that even though I checked
the weather, I went out without enough clothes.” And so on.

Before we leave this example, observe that even at this level there
could be more “whys” which come in between the whys given, such
as “why is someone more likely to get sick when one is out in bad
weather without enough clothing?” The appropriate level of detail,
along with aspects such as amount of technical language, is an agree-
ment between the person giving the proof and the person reading
or hearing the proof. (Your instructors will be pretty demanding for
your proofs, to prepare you for kids, who are the most demanding
audience.)

Here’s three different proofs for our theorem, all supplying an an-
swer to “why?” As you’re reading, try to pick out the core idea that’s
essential to each proof and think about how that idea could be scaled
to different audiences. For each proof write down who you think the
intended audience is. Make note of the technical vocabulary that’s
being used in each proof and how you might explain that vocabu-
lary to the intended audience. While the proofs are given in adult-
appropriate language, think about how you might translate these
proofs into a age-appropriate activities for a class of second graders.

(0.1.3) Proof (of Theorem 0.1.2). A number is odd if its right-
most digit is 1, 3, 5, 7, or 9. A number is even if its rightmost
digit is 0, 2, 4, 6, or 8. To find the rightmost digit of the sum
of two numbers, you only have to add the rightmost digits
of the two numbers and take the rightmost digit of that. For
example, consider the numbers 1345 and 629. The rightmost
digits are 5 and 9. Adding these gives us 14, whose rightmost
digit is 4. So, we expect the rightmost digit of 1345+ 629 to
be 4. And it is: 1345+ 629 = 1974.

This tells us that in order to verify that the sum of any two
odd numbers is an even number, we just have to check whether
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the sum of any two odd digits has an even digit on the right. It
might not seem like a big deal at first, but this actually helps a
lot! We’ve gone from talking about all the odd numbers (there
are infinity of them) to talking about just five digits. We just
checked this criterion for 5 and 9. We have to go through
every case so that we’re sure it always works:

1+ 1 = 2 3+ 1 = 4 . . . 9+ 1 = 10

1+ 3 = 4 3+ 3 = 6 . . . 9+ 3 = 12

1+ 5 = 6 3+ 5 = 8 . . . 9+ 5 = 14

1+ 7 = 8 3+ 7 = 10 . . . 9+ 7 = 16

1+ 9 = 10 3+ 9 = 12 . . . 9+ 9 = 18

In every single one of these cases the rightmost digit is even.

Follow the above chain of reasoning at least two times more to
convince yourself that it gives a proof – a reason why for any two
odd numbers their sum will be even. Proofs, like poetry, are meant to
be read many times.

Here’s a proof that gives a visual approach to Theorem 0.1.2.

(0.1.4) Proof (of Theorem 0.1.2). One way to characterize
odd numbers is: if you have an odd quantity of things then
the things can be put in groups of two with one thing left
over. For example, the things could be the students in your
kindergarten class. If you have an odd number of students,
whether it’s 17, 21, or 49, when the students are paired there
will be one left out. We can also represent this definition of
odd numbers with a picture:

In the picture the things are the stars in the night sky, orga-
nized in groups of two, and as it happens there’s one left
out. We don’t know exactly how many stars there are (and
in fact we don’t really want to know, because we want our
proof to work regardless of how many there are, and because
it would spoil some of the mystery of the cosmos) but we
know it must be odd because there’s one star by itself while
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the rest are paired. We indicate this uncertainty in the quan-
tity by having dots represent some unknown amount of pairs
of stars. Now suppose we have two collections of stars, which
we can picture like this:

In this picture the blue stars are all the stars that we can
see from the North Pole and the red stars are all the stars
that we can see from the South Pole. We don’t know exactly
how many stars there are in either collection. Maybe there
are 135668453433 blue stars and 7546453755421 red stars. It
could really be anything. Well, almost anything – they must
both be odd numbers because both collections come in pairs
except for one star left over.

That was a way to describe what it means for a number to
be odd . Similarly, even numbers count things which come in
pairs with nothing left-out.

Given that language, the proof is simple. Suppose we add
two odd collections together. We can pair those two left-out
stars so that every star in the sum now appears with a partner.
That means that the sum is even.

That’s it! Once we think about odd and even in the right way, the
proof is contained in the last paragraph. And this is enough to ad-
dress what happens for any odd numbers.

In this second proof, notice how the dots mean something com-
pletely different than the first. In the first proof, we wrote the dots
because we felt lazy, not because there was anything uncertain about
how many cases there were to consider. In this proof, the dots mean
that we don’t really know how many stars there are, that it could just
as well be any odd number.

OK, one more proof. This one is closer to something that a mathe-
matician might write for another mathematician. It uses the language
of mathematics, and in particular variables and algebra, but expresses
exactly the same argument given in 0.1.4.
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(0.1.5) Proof (of Theorem 0.1.2). A number is odd if it can
be written as 2x+ 1, where x is some integer (The word inte-
ger means whole number, either positive, negative, or zero). A
number is even if it can be written as 2x, where x is some in-
teger. To start, pick any two odd numbers. We can write them
as 2n+ 1 and 2m+ 1. The sum of these two odd numbers is
(2n+ 1)+ (2m+ 1). This can be simplified to 2n+ 2m+ 2 and
further simplified to 2(n+m+ 1). The number 2(n+m+ 1)
is even because n+m+ 1 is an integer. Therefore, the sum of
the two odd numbers is even.

Whew! That was a lot of proving! It’s mathematically sufficient just
to prove a theorem once (if it’s right, it’s right) but in this book we’re
trying to do something more than just establish mathematical results.
We’re going to consider many ways of looking at certain basic math This sort of

understanding is
part of mastery.
More on that in
Chapter 2.

theorems, so that our understanding is flexible enough to support
age-appropriate explanations for any classroom and to accommodate
the variety of approaches kids will want to take.

Discussion

Now that we have some experience reading proofs, we can discuss
mathematical reasoning and its role in education. Recall our example
of a person explaining to a kid why they were tired. They provided a
chain of reasoning, with each step following logically from the previ-
ous. Mathematical arguments are chains of reasoning, but applied to
numbers, shapes, and data.

Each of the proofs just given starts with a definition and then pro-
ceeds until the desired conclusion is reached. When figuring out a
mathematical proof we might start with the observed phenomenon
and then search for evidence. But when writing a mathematical proof,
we start with basic assumptions, called definitions and axioms, and
reason forward.

One of the big questions to answer at this point is: Why does all this
matter? Aren’t we spending a lot of time on odd numbers when there
are more serious topics to cover? (Like long division. Long division
is as serious as it gets.)

There are a few good reasons for emphasizing genuine mathemat-
ical practice in elementary education. One is that it’s an exercise in
reasoning generally. It strengthens an aspect of cognition that is use-
ful across many domains. Mathematics is a particularly great place to
practice problem solving as there’s nothing to “distract” from it, such
as data collection in science activities or learning the trade of differ-
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ent crafts in art activities. And when kids really understand why we
multiply multi digit numbers the way we do, they are doing what
mathematicians do!

Secondly, learning is improved through structure. For example, mem-
ory recall of strings of letters or digits is greatly improved by break-
ing them down into pieces and then structuring those pieces in some
artificial but helpful way. Indeed, there are a lot of clever tricks for
remembering procedures and formulas in mathematics. You might
still recall mnemonics such as FOIL and PEMDAS, as well as useful
phrases such as “cross multiplication.” But mathematics is more than
a loosely connected collection of arbitrary facts. It has its own natural
structure, and it’s only through understanding these logical connec-
tions that the student can obtain real fluency, and possibly even enjoy
the subject. And this sort of understanding leads to better recall of
important facts, anyway.

An example of this second point is the multiplication table, a set
of essential mathematical facts which we’ll elaborate on in Chapter 4.
Rather than just a collection of 144 independent pieces of information
(1⇥ 1 through 12⇥ 12), it’s helpful for the student to understand the
multiplication table as a web of connected facts. For instance, the “six
times row” is double the “three times row”:

3⇥ 1 = 3 3⇥ 2 = 6 3⇥ 3 = 9 3⇥ 4 = 12 . . . 3⇥ 12 = 36

6⇥ 1 = 6 6⇥ 2 = 12 6⇥ 3 = 18 6⇥ 4 = 24 . . . 6⇥ 12 = 72

This observation both reinforces recall, as for example to remember
6⇥ 4 = 24, the student can use the fact that 24 is twice as much as
12 = 3⇥ 4. But it also gives experience with what we will learn to call
the associative law for multiplication. This law is part of a student’s
necessary foundational knowledge for learning algebra.

Turning back again to the three proofs of Theorem 0.1.2, we no-
tice that these chains of reasoning have different characteristics. ProofWhile there are

certainly correct and
incorrect

mathematical
statements, there is
no exclusively right

way to do math.
Like with all of the

subjects you will be
teaching, remember

that context and
audience inform the

best practices for
how should you

present math.

0.1.3 is more procedural, proof 0.1.4 is visual, and proof 0.1.5 is alge-
braic. Each starts with some definition for an odd number —either
through the rightmost digit, through pairings with one element left
over, or algebraically as a number of the form 2x+ 1. It’s good to un-
derstand why these meanings are interchangeable, so that they are
all are a valid place to start.

The amount of detail needed in a proof can depend upon the au-
dience (contrast the crystalline brevity of Proof 0.1.5 with the organic
abundance of Proof 0.1.4). In the exercises below, you’ll find a ques-
tion asking you to identify who the intended audience might be for
each proof and describe how you would explain the proof’s vocabu-
lary to that audience.
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Each of the proofs has some value. Proof 0.1.3 reinforces the impor-
tance and structure of the standard addition algorithm. Proof 0.1.4 is
mostly pictorial, and could be appropriate for younger learners. In
particular it could be shared before a student had learned about al-
gebra or even multidigit addition. Proof 0.1.5 is an algebraic way to
express 0.1.4. Compared to 0.1.4 it is more concise and and has a clar-
ity that’s characteristic of mathematical writing. But the language is
very technical (there are variables!), and the exposition is terse.

Understanding multiple proofs in adult language helps prepare
you for giving a variety of explanations in the classroom. Part of your
work as a teacher will be to decide, based on the background and
interest of your students, what reasoning is best to highlight in a
given situation. More than that, you’ll want to offer different types
of arguments as a matter of course, so that your students can find
among those what best supports their learning. As much as possi-
ble we will use multiple definitions to express the meaning of each
concept that we study. We will look at different arguments to help
you first reinforce your own understanding of the material and then
begin the work of connecting your own advanced knowledge with
age-appropriate explanations.
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0.2 connections to the common core
2.OA.3 Determine
whether a group of

objects (up to 20)
has an odd or even

number of members,
e.g., by pairing

objects or counting
them by 2s.

In the Common Core, even and odd numbers are mentioned twice.
Both times, they are used as interesting mathematics which can serve
larger goals.

In second grade, students learn about even numbers as preparation
for multiplication. Looking for groups of twos is the first example for
looking at groups of equal size in general.

Cluster heading for
2.OA.3-4 Work with
equal groups to gain

foundations for
multiplication

The very same odd plus odd is even and similar activities we share
with you also occur in some second grade curricula. Of course, the
proof we gave with variables would not be expected, but the pictorial
proof could be developed (this pictorial proof has been the favorite
mathematical argument of the last author’s daughter, who is now
nine years old). Establishing that that an odd number added to an
odd number gives an even result would not seem to be “in” a very
narrow reading of the Standards, but the reasoning about making
an equal group (of two) certainly reinforces the main notion. Indeed,
students should be doing mathematical work as they learn concepts,
and the work of having to make an additional group of two is a good
example.

Even and odd numbers are also mentioned in the cluster on gener-
ating and analyzing patters in fourth grade.

A good example is the task 3.OA Patterns in the Multiplication Ta-
ble on Illustrative Mathematics (which you can find at
https://www.illustrativemathematics.org/illustrations/956). Here we see that
because multiples of odd numbers alternate between even and odd,
while multiples of even numbers are always even, picturing them all
together gives a sort of plaid pattern.Generate a number

or shape pattern that
follows a given rule.

Identify apparent
features of the

pattern that were
not explicit in the

rule itself. For
example, given the
rule “Add 3” and

the starting number
1, generate terms in

the resulting
sequence and

observe that the
terms appear to

alternate between
odd and even

numbers. Explain
informally why the

numbers will
continue to alternate

in this way.

Patterns are not to just be noticed, but explained. While it is good
to notice some regular behavior, it is much better to work to describe
that behavior precisely and then understand and explain how that
regular behavior is being produced, whether it be identifying mech-
anisms in science or finding proofs in mathematics. In this example,
multiples of odd numbers alternate between even and odd because
we repeatedly add to find the multiples, and odd plus odd is even
while even plus odd is odd. These latter facts can be further explained,
as we’ve done.

We’ve provided a first example around even and odd numbers
also as an introduction to the Mathematical Practices. There are eight
Mathematical Practices, which while only discussed briefly at the be-
ginning the Common Core document are really the core of Common
Core instruction.

1. Make sense of problems and persevere in solving them.

2. Reason abstractly and quantitatively.
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3. Construct viable arguments and critique the reasoning of oth-
ers.

4. Model with mathematics.

5. Use appropriate tools strategically.

6. Attend to precision.

7. Look for and make use of structure.

8. Look for and express regularity in repeated reasoning.

How these Practice Standards interface with the Content Standards
is an interesting subject, worthy of an entire book to elaborate. We
start understanding these by pointing out that each has key verbs
which describe student actions. In our example of even and odd num-
bers, it is clear that that what we have on hand are some arguments
or proofs. That already is novel, as traditionally it has been fine to de-
velop K-12 mathematics without any rationale at all – odd plus odd
is even because the teacher and textbook say so, and then maybe the
examples we see agree with what they say.

But the third mathematical practice goes further, to aspire for stu-
dents to be active in constructing viable arguments as well as cri-
tiquing the reasoning of others. How that can look in a classroom can
vary widely, but the aims of the Practice Standards are not met by stu-
dents only seeing a teacher make an argument, though that certainly
can help clarify things at the end.

One of our main aims for these notes is to support your engage-
ment in the Mathematical Practices. The most valuable tool for this
are classroom and homework activities which we have designed. These
not included in the main text so that instructors can use them with
some flexibility and modify them as desired. Our goal in these notes
is to support your basic understanding well enough, in particular go-
ing through key examples carefully, so that you can build on that
understanding in novel ways which extend you as a learner.

Our discussion of odd and even provides an example of both adult-
level and kid-appropriate viable arguments. We will see many more
of these. We also hope that you have opportunities to persevere, to be
precise, and to use structure and tools as we go through the upcom-
ing chapters together.

Conclusion

In this chapter we wrote and proved our first theorem. We’ve had
nothing but good times so far! In the exercises below, you’ll have the
chance to discover some more theorems about even and odd numbers.

11



You’re working with other students and your instructor for now, but
we’ll see each other again next chapter. It’ll be fun. We’re going to
learn ancient number system, including the Egyptian with staffs and
pyramids and other funky pictures. But we don’t want to spoil it all
now. You’ve got some exercises to do.

We know that mathematical proofs demand more from a reader
than other types of text. Thanks for reading!
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0.3 exercises

0.3.1. For each of 0.1.3, 0.1.4, 0.1.5:

a.) Who do you think is the intended
audience?

b.) Write down any important vocabulary
terms and how you would define
those terms for the intended audience.

0.3.2. In 0.1.3, how many cases do we consider
for the odd digit additions from 1+ 1 to
9+ 9. How many are repeats?

0.3.3. Answer the following questions related to
0.1.5.

a.) Pick three odd numbers and write
them as 2x+ 1 for some integer x.

b.) Pick three even numbers and write
them as 2x for some integer x.

c.) Explain each step in the simplification
from (2n+ 1) + (2m+ 1) to
2(m+n+ 1).

d.) Work through all the steps of the
proof with the numbers 37 and 59.

0.3.4. How would you explain Theorem 0.1.2 to a
kindergarten class? Design an explanation
or activity.

0.3.5. Work through the following activity.

(0.3.1) Activity . Is the product
of an even number and an odd
number even or odd?

Recall that a product is the result (or, uhm,
product) of multiplication. If you ever
don’t know what a word means, don’t feel
bad about having to look it up. Go through
all the steps that we did in this chapter:
perform experiments and gather data (that
is, try it out with your favorite numbers),

formulate a theorem, then prove the
theorem from multiple perspectives. Here’s
a framework to get you started.

a.) Multiply an even number with an odd
number. Is the result even or odd?
Repeat with at least five more pairs of
numbers.

b.) Write a theorem.

c.) Let’s do the first proof together.

(0.3.2) Proof (First Proof of
Your Theorem). Let’s use one
of our definitions of even and
odd numbers from this
chapter. An even number is
one that is twice some smaller
number. For example, 4 is
even because 4 is twice 2. 58 is
even because 58 is twice 29.
Odd numbers aren’t twice any
smaller number. OK. We’ve
got our definitions. Now we
have to show that the result
(your theorem) is a natural
consequence of these
definitions. A lot of the time
the hardest part in this is just
picking the most convenient
definitions.

So, an even number times an
odd number. Well, the even
number is twice some smaller
number. Let’s call this smaller
number small. We’re saying
that our even number is twice
small. Good. Naming things
is half the battle here. (That’s
all variables are: names for
things.) Therefore, the product
of the even number and the
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odd number is twice the
product of small and the odd
number. For example, if our
even number is 8 and our odd
number is 39, then small is 4,
and 8⇥ 39 is twice small ⇥39.
Make sense? Well, that’s it!
Just read those last few
sentences again. The product
of the even number and the
odd number is twice
something else. That’s exactly
our definition of an even
number. So, the product of an
even number and an odd
number is even.

d.) Write another proof that mostly uses
pictures. Remember that the product
of two numbers can be visually
interpreted as a rectangular area. For
example, 4⇥ 5:

e.) Write another proof that uses the
technical language of mathematics:
variables, equality signs, and so forth.
A really good proof here probably
shouldn’t be any longer than three
(3!!) lines.

0.3.6. Look back at the proofs to the previous
question. Nowhere did you specifically use
the fact that the second number is odd. In
fact, exactly the same proofs give the
following more general theorem:

(0.3.3) Theorem . The product of
an even number with any integer is
even.

There isn’t really anything to do in this
exercise. It’s more of a mental exercise. The
theorem from the previous exercise is just
a special case of this one because an odd
number is a type of integer.

0.3.7. (Challenge) Give a picture-based proof that
the product of two odd numbers is odd.

0.3.8. Summarize the results of this chapter by
completing the following table:

+ ⇥

odd & odd even

odd & even even

even & even
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