Background idea: understand differential topology through (e.g. top.) of configuration space functors.

\[L \times L \rightarrow L \times L \text{ but } \text{Conf}(L \times L) = \text{Conf}(L) \times \text{Conf}(L) \]

Koszul: Bott-Tukey

\[f : S' \rightarrow R^n \text{ cont } \]

Conf. \(f \) encodes finite-top/quantum

\[\text{first as } L : S^k \times S^l = \mathbb{R}^n \]

Conf. \(L : S^k \times S^l = \text{Conf}(R^n) \)

Dyck = Conf 1.

Watanabe: 8 Diff S' \times S'

through conf. spa, regards.

Godwilling "cutting" away handles, makes embedding questions to such for disjoint unions of balls.

Cubical diagrams & Blakers-Massey

\[f : X \rightarrow Y \]

\[(b) \text{ ch } f = Y \cup (X \times \mathbb{R}^2) / \sim_{X \times 1 - X \times 1} \]

\[\text{ch} \rightarrow H_n(X) \rightarrow H_n(Y) \rightarrow \cdots \]

\[\text{LES} \rightarrow H_n(X) \rightarrow H_n(f) \rightarrow H_n(Y) \rightarrow \cdots \]

Def: We say \(f : X \rightarrow Y \) is \(k \)-connected if \(\text{ch} f \)

is \((k-1) \text{st} \text{th}) \text{ spc. } \).

Cubical diagrams:

\[\varepsilon = 0, 1, \ldots, 3 \]

\[\varepsilon = \text{top. } \]

\[2^x \text{ objects } 2^y = \text{ morphisms } 2^3 \text{ squares. } \]

Def: Total cub. of \(n \)-cub. diagram is cub. of induced

map of \(n \)-cub. which \(u \)-cube yields.

\[X \rightarrow X \rightarrow C \]

\[X \rightarrow C \]

\[X \rightarrow X \rightarrow C \]

Total ch. = ch. union = \(X \times X \times C \uplus X \times X \times C \uplus X \times X \times C \)

Def: A square in \(C \)-Cartesian if total of \(X \).

\[\Rightarrow \text{ M-V sequence in } H. \]

\[\text{A square is } k \text{-cartesian of total if } k \text{-core. } \]

\[(M-V \text{ inv. a range}) \]

Def: Total fiber is ...

\[\text{fibers of fiber. } \]

\[\text{M-V say in } H. \]