Theorem (thanks Andrea Bandini)

Let $E \in E$ and ν, v_e be such that $d \leq 3$ is a smooth manifold.

- Δ is a cone on the base in the unit sphere.
- $\Theta \in \Theta$.

Fixes (possible)

- Pass to sphere bundle (base, ? section?)

- "Work around" singularities in codim 2 or greater.

Define Thom cochains for proper cooriented maps (extending from 0 to infinity). Follow Quillen's "Elementary proof of ..."

NMI's suggestion: replace $E \otimes E$ by $E \otimes E$, and play some game with section? codim??

Then cochain dictionary

<table>
<thead>
<tr>
<th>Subfields</th>
<th>Cocktails</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Σ</td>
</tr>
<tr>
<td>U</td>
<td>$+$</td>
</tr>
<tr>
<td>$f^{-1}(v)$</td>
<td>$f^{-1}(v)$</td>
</tr>
<tr>
<td>$f(v)$</td>
<td>$f(v)$</td>
</tr>
</tbody>
</table>

- $f(\nu)$ proper \Rightarrow Ξ isomorphic
- Then Δ.

- Cup product $\cap \delta$
- Character normal bundle \times Steinert operations

Wu formula: $W = M$ subfield U normal bundle.

$f_1 W_2(v) = \Sigma^2 E_w$.