Focus instead on H. Use cohomology structure.
(I don't understand everything as much as I'd like about "whole story" yet - H, H' + all structure)

- Each $B^r \mathbb{C}[\mu]$ is a top μ group $\Rightarrow H$ is a cocommutative Hopf algebra.
- For R a ring there is $B^r \mathbb{C}[\mu] \otimes B^r \mathbb{C}[\mu] \rightarrow B^{2r} \mathbb{C}[\mu]$
 \[
 \begin{array}{ccc}
 e & \otimes & e \\
 \mu & \mapsto & \begin{bmatrix}
 e \\
 \mu
 \end{bmatrix}
 \end{array}
 \]

There exists a $(\oplus (x, B^r \mathbb{C}))$ of structure of \mathbb{C} ring

\[
 f: x \rightarrow B^r \mathbb{C}, \quad g: x \rightarrow B^r \mathbb{C}
\]

\[
 x \triangleright y = x \triangleright y \quad B^r \mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C}
\]

Poincaré coincidence or cup product.

$\mathbb{P}^k \otimes H_k (B^r \mathbb{C}; \mathbb{P}_x)$ is a Hopf ring

Hypothesis: $x_2, x_3 \in \text{Heis alg}$

Hypothesis: x_i an object in alg's

Hypothesis: x_i an object in alg's

Two products: $x \otimes x$ and \cdots

\[
 a \otimes (a \otimes c) = \Delta (a) \otimes (a \otimes c)
\]

Thm (S. Wilson) $\otimes H_k (B^r \mathbb{C}; \mathbb{P}_x)$ is a

Hopf ring over $H_k (B^r \mathbb{C}; \mathbb{P}_x)$

Start with $H_k (B^r \mathbb{C}; \mathbb{P}_x)$

- dual to H^2. Polynomial gen'd alg.
 \Rightarrow prim. ideal gen'd $\Rightarrow H$ is divided power
 (unless more)

Geometrically $x \otimes$ multiplication is cellular

\[
 \overline{y_i} \in H_i (B^r \mathbb{C}) \begin{array}{ccc}
 1 & \otimes & \text{pt}
 \end{array}
\]

\[
 x_2 \otimes y_3 = (x_2 \otimes y_3) \otimes 1
\]

Divided powers.

$\otimes \mathbb{P}_x$. Exterior over y_3.

\[
 y_3 = (y_3 \otimes x_2 \otimes y_1)
\]

\[
 x \overset{\otimes 2} {\longrightarrow} y_1 \otimes y_1 \quad \text{dual to} \quad z_2 \in H^2
\]

rep'd by $S^2 \rightarrow B^2 \mathbb{P}_x$

\[
 \begin{array}{ccc}
 y_2 \otimes x \rightarrow (y_2 \otimes x) \quad \text{and claim}
 \end{array}
\]

\[
 y_1 \otimes x \otimes y_2
\]

\[
 y_1 \otimes x \otimes y_2 = (y_1 \otimes x \otimes y_2)
\]

\[
 \begin{array}{ccc}
 z \left(y_1 \otimes y_2 + 1 = y_1 \otimes y_2
ight)
 \end{array}
\]

\[
 (1 \otimes y_2) \otimes (y_1 \otimes y_2)
\]

\[
 \begin{array}{ccc}
 \square \otimes \square = 0
 \end{array}
\]

\[
 y_1 \otimes x \otimes y_2
\]

\[
 \begin{array}{ccc}
 \begin{array}{ccc}
 y_1 \otimes x \otimes y_2
 \end{array}
 \end{array}
\]

Relationship to pairing x.

Standard H' statement?

More elementary/geometric proof using H, H' together?