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Definition 1. A function is concave upward on the

interval between a and b if f ′′(x) > 0 for all x between

a and b. A function is concave downward on the interval

between a and b if f ′′(x) < 0 for all x between a and b.

We can understand the terminology when we think of the

meaning of the second derivative, as the rate of change

of the first derivative. A positive second derivative means

that if the first derivative were positive it is becoming

more positive, and if it were negative it would become

less negative. In either case, the graph of the function

“curls up”, which is what it means to be concave upward.
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The analysis of a negative second derivative is similar.

Example 2. Find where the function x4 − 4x3 − 18x2 +
57x−

√
7 is concave upward or downward.

Concavity information will be useful in graphing curves.
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One immediate application of the second derivative is to

give a sometimes easier way to determine whether a

critical point of a function is a relative maximum or

minimum. Brief analysis of the graphs shows that at a

relative maximum a function must be concave

downwards, and at a relative minimum it must be

concave downwards.
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Theorem 3. Let P = (c, f(c)) be a stationary point of

a function f(x).

• P is a relative maximum if f ′′(c) < 0.

• P is a relative minimum if f ′′(c) > 0.

Example 4. A gag store can buy whoopie cushions at

$1.25 each and estimates that if they are sold for x dollars

each, they can sell 10e−0.02x each week. Express the profit

as a function of x and find the price at which profit is

maximized.
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• Check where the sign of the derivative changes or use

the second derivative test to determine which critical

points are local maxima or minima.

• Draw in “cups” at local minima, “caps” at local maxima,

and one of four kinds of curve, as sketched on the board,

in the regions where the the signs of the first and second

derivative do not change.

• Fill in the parts of the graph in between the curves you

have put in.
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