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Remember our mnemonic, dwarf-friendly form of the

quotient rule as we apply it a few times.

Example 1. Take the derivatives of:

• 1
x−2.

•
√

x
x2+2x−4.

• x−1
x+1
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Example 2. There are 35−t cases of a flu after t months

in a town of 5000 + t2 people. What is the percentage of

people with flu? What is the derivative of this percentage?

The derivative of percentage should not be confused with

the notion of percentage rate of change. If f(x) is

measuring a quantity, the percentage rate of change of

that quantity is f ′(x)
f(x) × 100%. In practical terms, the

derivative of percentage can be volatile, while the

percent rate change is more of a “big picture” number.
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knowing it, we are breaking down a function as a

composite. Understanding composite functions can be

tricky for many reasons:

• Composing two functions is so natural that you’ve done

it without thinking about it.

• It makes no sense to take the composite of two numbers

so unlike addition of functions we cannot rely on previous

intuition.
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• While composition is simple conceptually, the ways to

express it can be confusing.

• In some important ways, composition behaves quite

differently from addition and multiplication of functions.



6

Definition 3. The composite of the functions f(x) and

g(x) is the function whose value at x is f (g(x)).



6

Definition 3. The composite of the functions f(x) and

g(x) is the function whose value at x is f (g(x)).

Informally, one is plugging g into f .



6

Definition 3. The composite of the functions f(x) and

g(x) is the function whose value at x is f (g(x)).

Informally, one is plugging g into f .

Example 4. • f(x) = x2, g(x) = x + 1.



6

Definition 3. The composite of the functions f(x) and

g(x) is the function whose value at x is f (g(x)).

Informally, one is plugging g into f .

Example 4. • f(x) = x2, g(x) = x + 1.

• f(x) = x + 1, g(x) = x2.



6

Definition 3. The composite of the functions f(x) and

g(x) is the function whose value at x is f (g(x)).

Informally, one is plugging g into f .

Example 4. • f(x) = x2, g(x) = x + 1.

• f(x) = x + 1, g(x) = x2.

• The taxes you pay are a function of your salary. Your

salary can be a function of variables such as seniority.

Therefore, one can view the taxes you pay as a function

of variables such as seniority.



6

Definition 3. The composite of the functions f(x) and

g(x) is the function whose value at x is f (g(x)).

Informally, one is plugging g into f .

Example 4. • f(x) = x2, g(x) = x + 1.

• f(x) = x + 1, g(x) = x2.

• The taxes you pay are a function of your salary. Your

salary can be a function of variables such as seniority.

Therefore, one can view the taxes you pay as a function

of variables such as seniority.



7

• The temperature in an oven as it warms up is T (t) =
75 + 30t.



7

• The temperature in an oven as it warms up is T (t) =
75 + 30t. The density of air changes with temperature

according to ρ = 289
T
2 +257

.



7

• The temperature in an oven as it warms up is T (t) =
75 + 30t. The density of air changes with temperature

according to ρ = 289
T
2 +257

.Therefore, one can determine

the density of air in the oven as a function of time as it

is warming up.



7

• The temperature in an oven as it warms up is T (t) =
75 + 30t. The density of air changes with temperature

according to ρ = 289
T
2 +257

.Therefore, one can determine

the density of air in the oven as a function of time as it

is warming up.

• If f(x) = x2 − x what is f(x + h)?



7

• The temperature in an oven as it warms up is T (t) =
75 + 30t. The density of air changes with temperature

according to ρ = 289
T
2 +257

.Therefore, one can determine

the density of air in the oven as a function of time as it

is warming up.

• If f(x) = x2 − x what is f(x + h)?



8

Question 5. What happens when you compose any f(x)
with i(x) = x?



8

Question 5. What happens when you compose any f(x)
with i(x) = x?

The function i(x) = x behaves for composition of

functions like 0 does for addition of numbers and 1 does

for multiplication of numbers.



8

Question 5. What happens when you compose any f(x)
with i(x) = x?

The function i(x) = x behaves for composition of

functions like 0 does for addition of numbers and 1 does

for multiplication of numbers. We sometimes call it the

identity function.



8

Question 5. What happens when you compose any f(x)
with i(x) = x?

The function i(x) = x behaves for composition of

functions like 0 does for addition of numbers and 1 does

for multiplication of numbers. We sometimes call it the

identity function.

Definition 6. Two functions f(x) and g(x) are inverse

to one another if f(g(x)) and g(f(x)) are both the

function i(x) = x.



8

Question 5. What happens when you compose any f(x)
with i(x) = x?

The function i(x) = x behaves for composition of

functions like 0 does for addition of numbers and 1 does

for multiplication of numbers. We sometimes call it the

identity function.

Definition 6. Two functions f(x) and g(x) are inverse

to one another if f(g(x)) and g(f(x)) are both the

function i(x) = x.



9

Informally, functions are inverse if they “undo each

other”.



9

Informally, functions are inverse if they “undo each

other”. You have seen inverse functions before.



9

Informally, functions are inverse if they “undo each

other”. You have seen inverse functions before.

Sometimes composition of functions is denoted f ◦ g,

which makes it look even more akin to multiplication.
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