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Example 1. A shoe maker estimates that the profit for
selling shoes as a function of price (accounting for the

market equilibrium) is —5 + p — i—(z) per shoe. Because of
a price war, the shoe maker estimates that the price will
be 22 — +/t dollars over the next t months. How fast will
his profits changing over in 4 and 9 months?
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Theorem 2. The derivative of a* = In(a)a®.  In
particular %ex = e”.

It is remarkable that the derivative of e* is itself. This is
a special property of exponentiation and the number e.

When we compute a derivative, we should see how our
computation fits with the graph of the function. In the
case of a”, we see that as this function gets larger it
grows faster (and thus gets even larger and grows even
faster...).

Knowing just the derivative of e* allows us to compute
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the derivatives of functions made from e* and
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The fact that the derivative of €'* is r times itself makes
it useful in modeling populations, investments,
temperatures...
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Note that this fills in a spot which has been missing on

the list of derivatives. In general the derivative of

1

—=a""t = z". But this does not work for n = —1. But
1

in the function In(x) has derivative ™.

Again, we should check the behavior of the derivative
with the behavior of the graph.

And again, once we combine with other rules, we can




f(z) = xIn(x)
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