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Relating hypothesis testing to confidence
intervals

The basic calculations for hypothesis testing and

confidence intervals are the same: take a simple random

sample, compute its mean, and then calculate its

z-statistics using the Central Limit Theorem.

In fact, these two procedures are logically related (seeing

how helps us better understand both concepts).
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may reject the null hypothesis µ = µ0 at significance level
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may reject the null hypothesis µ = µ0 at significance level
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It helps to sketch a picture of what this is saying and to

choose some concrete numbers.
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of 5 and a measured mean of 172.1 from a sample size of

80.
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• Find a confidence interval with C = 95% for this

variable.
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• Find a confidence interval with C = 95% for this

variable.

• Show that the null-hypothesis of a mean equal to 175
can be rejected at level 5%.
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Caution: garbage in, garbage out

The most common mistakes one sees in applications of

statistics are not in the mathematics of means and

deviations – with practice one can master these methods,

and there are sophisticated computer packages to help

out – but in starting with biased data, whose error is

comparable to the confidence intervals in question.

Example 3. What if in our UO height example, two of

the sample taken were members of the basketball team

over 80 inches tall? If these outliers are thrown out,
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type I and II errors and power of tests.
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We will not at all cover the material from Chapter 15 on

type I and II errors and power of tests. This development

of language is straightforward enough so that you could

learn it on your own if you encountered these terms

outside of class.
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Estimating the mean without knowing
σ

In §13 the method we learned for estimating our

population mean µ had the serious drawback that we

had to know the standard deviation for our population.

We now wish to approximate µ without knowing the

standard deviation.
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Basic Idea: Take a SRS. Calculate the standard

deviation of our sample, s. This is called the standard

error to distinguish it from the unknown standard
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Basic Idea: Take a SRS. Calculate the standard

deviation of our sample, s. This is called the standard

error to distinguish it from the unknown standard

deviation of our population.

Calculate the mean of our sample x. Use s to estimate σ

and then techniques we’ve already learned to estimate µ

from x.



9

TERMINOLOGY: We use

µ = for our (unknown)



9

TERMINOLOGY: We use

µ = for our (unknown) population mean,



9

TERMINOLOGY: We use

µ = for our (unknown) population mean,

and

x = for our



9

TERMINOLOGY: We use

µ = for our (unknown) population mean,

and

x = for our sample mean.



9

TERMINOLOGY: We use

µ = for our (unknown) population mean,

and

x = for our sample mean.

We now also need to distinguish between two standard

deviations.

σ = for our (unknown)



9

TERMINOLOGY: We use

µ = for our (unknown) population mean,

and

x = for our sample mean.

We now also need to distinguish between two standard

deviations.

σ = for our (unknown) populations standard deviation



9

TERMINOLOGY: We use

µ = for our (unknown) population mean,

and

x = for our sample mean.

We now also need to distinguish between two standard

deviations.

σ = for our (unknown) populations standard deviation

and

s = for our



9

TERMINOLOGY: We use

µ = for our (unknown) population mean,

and

x = for our sample mean.

We now also need to distinguish between two standard

deviations.

σ = for our (unknown) populations standard deviation

and

s = for our sample standard deviation.
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Recall that if our population has distribution N(µ, σ)
and we look at samples of size n, our standardized

sample mean

z =
x− µ

σ/
√

n
has distribution N(0, 1).
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68-95-99.7 rule, we would get incorrect answers!
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The critical values for t-distributions are in Table C.
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The critical values for t-distributions are in Table C. We

can check by comparing with the last row that with a

t-statistic you need to be more deviations away from the

mean to have the same level of confidence as a

z-statistic.
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Example 4. Use t-statistics to estimate population mean

with confidence 95% if we have an SRS of size n = 11
with x = 27 and s = 2.
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Example 4. Use t-statistics to estimate population mean

with confidence 95% if we have an SRS of size n = 11
with x = 27 and s = 2.

Example 5. With data as above, say whether or not the

null-hypothesis of µ = 30 can be rejected.
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Example 6. If you sample 200 bacterial lifespans and

find an average of 10.41 days and a deviation of 2.1, does

this finding support the hypothesis that these bacterial

lifespans are on average more than 10 days?


