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• Both populations need to be normally distributed, or...

• If distributions aren’t close to normal but no outliers

and no strong skewedness, need sample sizes over 15.

• Generally sample sizes greater than 40 are OK even with

strongly skewed distributions or outliers.
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• With C% confidence, we can say the true difference of

means is between (x1−x2)−t∗SE and (x1−x2)+t∗SE.
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Example 1. Mean body temperatures: In one study, 65

men and 65 women have their temperature taken (in

similar conditions). The male mean is 98.105 with a

standard deviation of 0.699. The female mean is 98.394,

with a standard deviation of 0.743. Give a 95% confidence

interval for the difference between these means and test

the hypothesis that women have higher temperatures than

men at the 0.05 level. What if the data were drawn from

samples of only 20 men and 22 women?



6

Recap of hypothesis testing for means
of two populations
To test the null hypothesis, H0 : µ1 = µ2,



6

Recap of hypothesis testing for means
of two populations
To test the null hypothesis, H0 : µ1 = µ2,we calculate

t0 =
x1 − x2

SE



6

Recap of hypothesis testing for means
of two populations
To test the null hypothesis, H0 : µ1 = µ2,we calculate

t0 =
x1 − x2

SE

Then P (t ≥ |t0|) < α supports the alternative hypothesis

Ha : µ1 6= µ2 at level α.



6

Recap of hypothesis testing for means
of two populations
To test the null hypothesis, H0 : µ1 = µ2,we calculate

t0 =
x1 − x2

SE

Then P (t ≥ |t0|) < α supports the alternative hypothesis

Ha : µ1 6= µ2 at level α.

To summarize, if we use the standard error SE in the

places the single-sample standard error was used, we may

use the same methods as we have been using to
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One week after the leech treatment (it was one treatment

lasting a little over an hour involving 4 to 6 leeches), the

leech group had a mean pain index of 19.3 with a standard

deviation of 12.2.

After one week of the other treatment, the control group

had a mean pain index of 42.4 with standard deviation of

19.7.

Test the null hypothesis that the effect of treatment

by leeches is the same as the effect of conventional

treatments.
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So for example, we might be interested in the question:

what proportion of the population is left-handed?

• Take sample from class. Not truly random, but probably

random enough for a question like this. Let p̂ be the

proportion of left-handed people.

• How well does this approximate the proportion p in the

general population?
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•

σ =

√
p(1− p)

n
.

Example 4. Suppose that two-thirds of college students

have cheated on an exam. What is the probability that in

a random sample (taken discretely) of 20 students, 15 or

more would have cheated? What is the probability that

10 or more have cheated?
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Getting back to statistical inference, we would like to do

inference aimed at estimating p from p̂. The normalized

z-statistic, which is behind the scenes of both confidence

intervals and hypothesis testing, would be z = p̂−p
σ where

σ =
√

p(1− p)/n as in the theorem. If n is large, then p̂

was approximately normal. Thus z will be approximately

standard normal.

In practice, we won’t know p. We use p̂ in place of p to

get the standard error in place of the standard deviation.

So we set s =
√

p̂(1− p̂)/n, and then z = p̂−p
s . To get a

confidence interval with certainty C%, we choose z∗ a
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Then the C% confidence interval is between

p− z∗
√

p(1−p)
n+4 and p + z∗

√
p(1−p)
n+4 .

Example 6. Redo our estimate for left-handers using the

“plus four” confidence interval.

Example 7. Establish some confidence intervals (both

the usual and plus four) for polls found at:

http://www.usatoday.com/news/polls/tables/live/2005-02-28-poll.htm
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Example 8. Find some polls on the web which publish

their sample size and margin of error, and determine with

what certainty the number being measured is within that

margin or error.


