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As before we should think about means and deviations,

but the formulae can now be complicated.

What we want to understand: the difference of means,

µ1 − µ2. The basic measurement we start with: the

difference of observed means x̄1 − x̄2.

In order to find confidence intervals and test hypotheses,

we need to understand standard deviations and errors.

Fortunately some sharp mathematicians and statisticians

come to our rescue.
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Theorem 2. The following approximations may be used

when t-procedures are applicable.

• With probability C% the (true) difference of means

µ1 − µ2 has values between

(x1 − x2)− t∗SE and (x1 − x2) + t∗SE,
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Theorem 2. The following approximations may be used

when t-procedures are applicable.

• With probability C% the (true) difference of means

µ1 − µ2 has values between

(x1 − x2)− t∗SE and (x1 − x2) + t∗SE,

where t∗ is the critical value associated to the t(n− 1)-
distribution where n is the smallest of n1 and n2.
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Examples of hypothesis testing for two means

Example 3. Estimate µ1−µ2 giving a confidence interval

of level 95% when we have:

• A sample of size 19 from population A, with mean 54,

and sample standard deviation 5.

• A sample of size 23 from population B, with mean 49
and sample standard deviation 4.
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Next we give all details in doing Exercise 17.38 from the

text. This exercise gives some IQ data for some boys and

girls from the same midwestern school district and asks if

there is a statistically significant difference between the

means. After keying some numbers into a calculator, we

get the following information for our two samples:

Population Mean Sample Size Sample mean Sample s.d.

Girls µ1 31 x1 = 105.84 s1 = 14.27
Boys µ2 47 x2 = 110.96 s2 = 12.12
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1. Our null hypothesis is that boys’ IQ scores are the same

as girls’ IQ scores. That is

H0 : µ1 = µ2.
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1. Our null hypothesis is that boys’ IQ scores are the same

as girls’ IQ scores. That is

H0 : µ1 = µ2.

Our alternative hypothesis is that boys have higher IQ

scores.

Ha : µ1 < µ2 or µ1 − µ2 < 0.

We wish to test this using our data.
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2. We calculate our two-sample t-statistic

t =
x1 − x2√

s21
n1

+ s22
n2

=
105.84− 110.96√

6.569 + 3.125
=
−5.12
3.114

= −1.644.
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2. We calculate our two-sample t-statistic

t =
x1 − x2√

s21
n1

+ s22
n2

=
105.84− 110.96√

6.569 + 3.125
=
−5.12
3.114

= −1.644.

3. We calculate our P -value. Since Ha is µ1 − µ2 < 0, we

wish to look for P (t ≤ −1.644). We use t(30) since

31 is our smaller sample size. (see p. 452 for a more

accurate way to determine degrees of freedom).

From the calculator, P (t ≤ −1.644) = .0553.
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4. We draw our conclusion: If we assume H0 is true, then

the probability of seeing samples like the ones we have is

.0553. This is moderately low, so our assumption that

H0 was true is probably wrong. So, this is moderate

evidence that boys score higher on IQ tests than girls.

Which is in turn evidence that small differences in tests

such as IQ tests do not accurately reflect much of

anything.

5. We can ask the calculator to do the test for us. This

is under STAT , TESTS, 4:2-SampTTest. We get

df = 56.93, t = −1.64, P = .053.
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We still need to do step 4 (conclusion) above. And we

need to do it carefully, because we’ve possibly lost track

of what all our numbers mean.
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Example 4. Physicians wish to measure the effectiveness

of leech therapy on arthritis pain (I’m not making this up!

See

http://www.annals.org/cgi/content/full/139/9/724)



12

Example 4. Physicians wish to measure the effectiveness

of leech therapy on arthritis pain (I’m not making this up!

See

http://www.annals.org/cgi/content/full/139/9/724)
They took a sample of 51 patients. They assigned a group

of 24 patients to receive “leech therapy,” and a control

group of 27 patients to receive a conventional pain-relief

therapy (diclofenac gel).



12

Example 4. Physicians wish to measure the effectiveness

of leech therapy on arthritis pain (I’m not making this up!

See

http://www.annals.org/cgi/content/full/139/9/724)
They took a sample of 51 patients. They assigned a group

of 24 patients to receive “leech therapy,” and a control

group of 27 patients to receive a conventional pain-relief

therapy (diclofenac gel).

One week after the leech treatment (it was one treatment

lasting a little over an hour involving 4 to 6 leeches), the

leech group had a mean pain index of 19.3 with a standard
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deviation of 12.2.
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deviation of 12.2.

After one week of the other treatment, the control group

had a mean pain index of 42.4 with standard deviation of

19.7.
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deviation of 12.2.

After one week of the other treatment, the control group

had a mean pain index of 42.4 with standard deviation of

19.7.

Test the null hypothesis that the effect of treatment

by leeches is the same as the effect of conventional

treatments.


