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It is common sense that for example on a physical fitness

test, a 14-year-old doing 50 sit-ups in a minute is not

doing as well as a 12-year-old doing 45 sit-ups, if the first

performance is below the 14-y.o. mean while the second

is above the 12-y.o. mean. In general to compare data

from different populations, we needed to understand how

many deviations from the mean that data lies. Formally

we have the following.



2

Definition 1. Given an observation x among normally

distributed data with distribution N(µ, σ), the z-score for

x is

x− µ

σ
.

z-scores are also sometimes called standardized variables.
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The z-score measures how many standard deviations x is

above the mean µ (or below, if the z-score is negative).

It is a standard statistical measure. For example, the

class evaluations you fill out at the end of each quarter

get compiled within each department, and instructors see

their z-scores. If an instructor has z-scores above 1 or

below −1 he or she is considered particularly good or,

respectively, bad - why would this be?
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Example 2. If a professor gets an average score of 9.1
on an item where the department average is 8.6 and the

standard deviation is 0.45, what is her z-score on this

item?
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Example 2. If a professor gets an average score of 9.1
on an item where the department average is 8.6 and the

standard deviation is 0.45, what is her z-score on this

item? If instead her average was 8.2, what would her

z-score be?

But the use of z-scores to evaluate teaching might have

its problems. First of all, will these scores be normally

distributed? (Think about whether the scores are “cut

off” anywhere, and what that might do to the

distribution). Also, the z-scores tend to correlate with

the grades students are expecting - why would this be?



5



5

(Correlations will be a big topic later in the term.)



5

(Correlations will be a big topic later in the term.)



6

Using z-scores to calculate proportions



6

Using z-scores to calculate proportions

We did some of these kinds of questions informally

before, but with z-scores we can answer them precisely.



6

Using z-scores to calculate proportions

We did some of these kinds of questions informally

before, but with z-scores we can answer them precisely.

Example 3. Birthweight in the United States is normally

distributed according to N(7.31, 1.26). Precisely what

proportion of babies are born over 8 pounds?



6

Using z-scores to calculate proportions

We did some of these kinds of questions informally

before, but with z-scores we can answer them precisely.

Example 3. Birthweight in the United States is normally

distributed according to N(7.31, 1.26). Precisely what

proportion of babies are born over 8 pounds?



7



8

The steps we take to solve this problem are:

1. Compute the standardized variable (or z-score)

associated to this variable.



8

The steps we take to solve this problem are:

1. Compute the standardized variable (or z-score)

associated to this variable. In this case z = .548.



8

The steps we take to solve this problem are:

1. Compute the standardized variable (or z-score)

associated to this variable. In this case z = .548.

2. Now we want to know how many babies are born with

standardized variable z ≥ .548.



8

The steps we take to solve this problem are:

1. Compute the standardized variable (or z-score)

associated to this variable. In this case z = .548.

2. Now we want to know how many babies are born with

standardized variable z ≥ .548. We look .548 up in

Table A in the appendix. First we round to .55. This

number is in the 6th row and 6th column, and is .7088.



8

The steps we take to solve this problem are:

1. Compute the standardized variable (or z-score)

associated to this variable. In this case z = .548.

2. Now we want to know how many babies are born with

standardized variable z ≥ .548. We look .548 up in

Table A in the appendix. First we round to .55. This

number is in the 6th row and 6th column, and is .7088.

A way to think of this number is that the area under the

standardized normal curve with z ≤ .55 is .7088, while
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3. Finally, we translate this into a percentage. This means

70.88% of the observations of x satisfy x ≤ µ + .55σ.

So about 71% of babies are born less than 8 pounds,

and about 29% of babies are born above 8 pounds.
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the area under the whole curve is 1.

3. Finally, we translate this into a percentage. This means

70.88% of the observations of x satisfy x ≤ µ + .55σ.

So about 71% of babies are born less than 8 pounds,

and about 29% of babies are born above 8 pounds.

These three steps are worth repeating.
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If x is observed in a normal distribution, then to find the

percentile associated to x we:

1. Compute the associated z-score, or standardized

variable.

2. Look up the z-score in Table A, to get an associated

fraction.

3. Multiply by 100 to get a percentage score.



11

Example 4. What proportion of babies are born under 5
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Example 4. What proportion of babies are born under 5

pounds?

Example 5. What proportion of babies are born between

6 pounds and 8 pounds? (For problems like this, it is

especially helpful to draw a picture.)
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Calculating variable ranges from proportions

The process we followed above can be reversed in order

to find specifications associated to percentages. We

must use Table A in reverse.

Example 6. You manufacture batteries whose duration

times are normally distributed with a mean of 80 hours and

a standard deviation of 10 hours. You wish to guarantee

to replace batteries that fail before a certain time. What

time should you choose if you wish to ensure that you

replace at most 2.5% of the batteries?
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time where x is a variable with distribution N(80, 10).
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3. Unstandardize: z ≤ −2.81 is the same as

x− 80
10

≤ −2.81 or x− 80 ≤ −28.1 or x ≤ 51.9.

So if we take T = 51.9 (T = 50 might make better ad

copy), you can guarantee to replace batteries that die

in less that 51.9 hours and be confident that will be no

more that 2.5% of your batteries.
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In general (for those who like formulae to follow),

suppose x is a normally distributed variable with

distribution N(µ, σ) and you wish to find a value C so

that K% of the observations of x satisfy x ≤ C. Take

the following steps:
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3. Unstandardize: z ≤ U is the same as

x− µ

σ
≤ U or x− µ ≤ σU or x ≤ σU + µ.

So C = σU + µ.
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Example 7. Suppose a professor has pre-ordained that

20% of his class should get A’s, 40% get B’s, 30% get C’s,

5% D’s and 5 % get F’s. (Such a system of pre-ordained

percentages is called “grading on the (bell) curve”, a

standard practice at places like MIT.) Suppose the final

grade averages are normally distributed with an mean of

72 and a standard deviation of 8. Where should the grade

lines be set to achieve the percentages of this system?


