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Definition 1. Let

x1, .., xn

be a list of data. Let x be the mean. The standard

deviation is given by

σ =

√√√√ 1
n− 1

n∑
i=1

(xi − x)2
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Why is this a reasonable measure of spread? If it is small

then one expects the quartiles to be close together, and

if it is large then the quartiles should be spread apart.

Example 2. [Excel example] Excel can compute standard

deviation with the STDEV command. We can see how

the deviation changes for data sets with larger and smaller

“spread.”
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Which description of data is better:
five-number summary or mean and standard
deviation?

The mean and standard deviation are always easier to

compute; the five-number summary is always more

accurate. Use x and σ when you have a symmetric

distribution of data. Use the five-number summary

otherwise.

If the distribution is approximately symmetric, the

median and the mean will be close, and the quartiles will
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be about equally placed around the mean. In that case,

the mean, and the standard deviation provide a similar

level of information.
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and σ, its standard deviation (hinted at towards the end

of the first lecture).

We will learn better what σ is, but now let’s see how it

can be used.
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1. In our class, how many men should be between 5’6” and

6’? (And how many men are between those heights?)

2. What percentage of men are over six feet tall?

3. If you were designing a piece of sports equipment with

a minimum height needed (golf clubs, hockey sticks),

where should you set that height so that over 95% of

men could use your equipment?
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Example 5. Birth weight of babies born in the US is

normally distributed with

x = 7.31 pound, and s = 1.26 pounds.

Prof. Sinha’s daughter Kiri was born at 6.12 pounds (6

pounds, 2 ounces). Roughly, what percentage of babies

are born smaller than she?
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z-scores and comparing data on
different distributions

Let’s start with an example question: Who’s taller for

their gender? A 75 inch tall man, or a 72 inch tall

woman? (Who ranks more highly in terms of

percentiles?)

Male height distribution is N(69.3, 2.8). So our man is

height 5.7 inches taller than the mean µ. But in order to

figure out where he is in terms of percentiles, we would

need to know how many σ’s (standard deviations) he was
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