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Shortest path calculation of seismic rays

T. J. Moser*

ABSTRACT

Like the traveling salesman who wants to find the
shortest route from one city to another in order to
minimize his time wasted on traveling, one can find
seismic raypaths by calculating the shortest traveltime
paths through a network that represents the earth. The
network consists of points that are connected with
neighboring points by connections as ‘‘long’ as the
traveltime of a seismic wave along it. The shortest
traveltime path from one point to another is an approx-
imation to the seismic ray between them, by Fermat’s
principle. The shortest path method is an efficient and
flexible way to calculate the raypaths and traveltimes
of first arrivals to all points in the earth simulta-
neously. There are no restrictions of classical ray
theory: diffracted raypaths and paths to shadow zones
are found correctly. There are also no restrictions to
the complexity or the dimensionality of the velocity
model. Furthermore, there are no problems with con-
vergence of trial raypaths toward a specified receiver
nor with raypaths with only a local minimal traveltime.
Later arrivals on the seismogram, caused by reflec-
tions on interfaces or by multiples, can be calculated
by posing constraints to the shortest paths. The com-
putation time for shortest paths from one point to all
other points of the networks is almost linearly depen-
dent on the number of points. The accuracy of the
results is quadratically dependent upon the number of
points per coordinate direction and the number of
connections per point.

INTRODUCTION

There are two traditional methods to compute seismic
raypaths between two points in the earth: shooting and
bending (Julian and Gubbins, 1977). Shooting tries to find
raypaths leaving one source point by solving the differential

equations that follow from ray theory for different initial
conditions until the trial ray arrives at the preassigned point.
Bending has Fermat’s principle as a starting point; it tries to
find a raypath between two points by searching the minimal
traveltime path between them.

Both methods have serious drawbacks. By shooting a fan
of rays leaving the source, one can obtain an impression of
the wave field. However, convergence problems are known
to occur frequently, especially in three dimensions. Also,
shooting will not find diffracted raypaths or raypaths in
shadow zones, where ray theory breaks down. With bend-
ing, one can find every raypath satisfying Fermat’s principle,
even a diffracted one, but only for one source-receiver pair
at a time, and it is not certain whether the path has an
absolute minimal traveltime or only a local minimal travel-
time. These drawbacks result in low efficiency from the
methods and incomplete results. The problems are even
more severe in three-dimensional than in two-dimensional
ray tracing.

In this paper, a method is presented that avoids the
disadvantages of shooting and bending. It uses an idea of
Nakanishi and Yamaguchi (1986) to approximate raypaths
by the shortest paths in networks as a starting point. 1 then
investigate methods to improve the efficiency of the search
for the minimum time path and show how it is possible to
treat reflected arrivals in the same way.

Network theory and shortest paths in networks are an
abstract formulation of problems that appear in many dif-
ferent branches of science and technology. They are usually
of discrete nature: there are a finite number of objects, and
the exact solution of the problem can be found in a finite
number of steps. One example is the road map, where the
network consists of cities and connections between them;
one can ask for the shortest path from one city to another, or
the shortest closed circuit along all cities, and so on. A wide
variety of techniques from network theory and especially
from the theory on shortest paths is available; see Deo and
Pang (1984) for a review of the literature.

One advantage of the shortest path method is that all
shortest paths from one point are constructed simulta-
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neously. This follows from the nature of shortest path
algorithms: calculating one path costs just as little computa-
tion time as calculating all paths. It can be applied for
instance in the simulation of common-shotpoint gathers.
Although a search that ignores the differential equations
and even Snell’s law does not seem to be efficient at first
sight, seismic ray tracing can make direct, practical use of
the increased efficiency of shortest path algorithms. Effi-

ciency has been improved by several orders of magnitude in’

the last 30 years by introducing sophisticated data structures
(Gallo and Pallottino, 1986). The most efficient one for ray
tracing can be selected by a simple comparison of the
available algorithms. The shortest path method is designed
to find a good approximation to the globally minimal travel-
time and traveltime path. It is therefore especially fit for
applications in traveltime tomography. Later arrivals on a
seismogram can only be computed if they can be formulated
as constrained shortest paths. For instance, the shortest
paths constrained to visit one point of a set of points that
form a scatterer or interface approximate diffracted and
reflected raypaths.

Finally, from the abstract structure of a network there is
no notion of dimensionality of the space, so two-dimensional
and three-dimensional ray tracing are possible with the same
algorithms.

SHORTEST PATHS IN NETWORKS AND SEISMIC RAYPATHS

Before the more theoretical analysis, I illustrate the pos-
sibilities of networks to represent approximate raypaths,
One important property of a seismic raypath is given by
Fermat’s principle: the raypath is a spatial curve along which
the traveltime is stationary. The construction of a ray
between a seismic source and a receiver can be based on this
principle. One could enumerate all curves connecting the
source and the receiver and look for the minimum traveltime
curve. This is usually done by bending an initial guess of the
raypath so that the traveltime along it is decreased, until
stationarity is achieved. The analogy between a seismic
raypath and a shortest path in a network provides an
alternative use of Fermat’s principle.
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In this approach, the relevant part of the earth is repre-
sented by a large network consisting of points connected by
arcs. Each point or node is connected with a restricted
number of points in its neighborhood but not with points that
lie farther away. It is therefore possible to travel from one
node to another via the connections. The network indeed
resembles a three-dimensional road map. As on a road map,
the connections between nodes have lengths. This length is
to be understood as a weight of the connection; for exampie,
in the application to seismic ray tracing, it is the traveltime of
a seismic wave between the two nodes. In seismic ray
tracing, the connection will have equal length for both
directions along it, by virtue of the reciprocity principle. In
other applications of network theory, the weight can be the
electrical resistance in an electrical network, the cost in an
economical decision tree, or whatever quantity must be
minimized in a discretized medium.

When the length of an arc is chosen equal to the traveltime
of a seismic wave, one can hope that the shortest traveltime
path between two nodes approximates the seismic raypath
between them. This is likely when the nodes of the network
are distributed such that almost any raypath can be approx-
imated by paths through the network. To this end, regular
distributions of the nodes and of the connections between
them are introduced. Such a distribution is required not only
to give reasonable approximations to seismic raypaths, but
also results in a considerable saving of memory space. Two
organizations of networks are used in this paper to illustrate
the shortest path method. Both illustrations are given only in
two dimensions, although the network theory does not
impose any restriction on the dimensionality of the space.
All quantities are made dimensionless; the horizontal dis-
tance x and the depth z range from 0 to 100.

In the first example, taken from Nakanishi and Yamaguchi
(1986), the nodes are distributed regularly on the boundaries
of rectangular cells in which the propagation velocity of
seismic waves is constant (Figure 1). Two nodes are only
connected when there is no cell boundary between them.
The traveitime between two connected nodes is defined as
their Euclidian distance multiplied with the slowness of the

——————

Fic. 1. Cell organization of a network. (a) Dashed lines: cell boundaries. Black circles: nodes. Solid lines:
connections. (b) Shortest paths from one node to other nodes in a homogeneous model.
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cell in between. Figures 2a and 2b show the shortest paths in
two networks. The model of Figure 2a has a constant
velocity of 1.0, so that the shortest paths approximate
straight lines, and the model of Figure 2b has a (dimension-
" less) velocity distribution ¢ = 1.0 + 0.01z, so that the
shortest paths approximate circular raypaths. The cell orga-
nization of networks is particularly suitable for the applica-
tion to seismic tomography, as in Nakanishi and Yamaguchi
(1986).

The second example uses a rectangular grid of nodes, of
_ which each node is connected with the nodes in a neighbor-
hood of it. The seismic velocity or slowness is sampled at the
node locations. The traveltime between two connected
nodes is defined as their Euclidian distance multiplied with
the average slowness of the two nodes. This organization
facilitates the drawing of contours of equal traveltimes and
velocities and, more important, the introduction of inter-
faces. Figure 3a shows a rectangular grid of 5 X 5 nodes,
each one connected with at most eight neighbors. In Figure
3b the shortest paths from the upper left node are plotted for
a homogeneous model. '

The shortest paths in more general media follow expected
patterns. In Figure 4a a medium with velocities ranging from
1.0 to 2.0 is represented by a network of 50 X 50 nodes and

at most 48 connections per node. The shortest paths from
one node at the left side of the model are plotted. It can be
seen that they converge in high-velocity regions and try to
avoid low-velocity zones.

The traveltimes along shortest paths to the 50 nodes at the
right side of the model can be compared with traveltimes
calculated with the shooting method for seismic ray tracing.
The raypaths in Figure 4b have been calculated by a numer-
ical solution of the ray equation for 50 fixed initial directions
with a fourth-order Runge-Kutta scheme (Stoer and
Bulirsch, 1980). No attempt has been made to reach a
preassigned receiver point; with a standard bisection method
this will usually take about five times more computation
time. The raypaths are discretized into 25 points; the trav-
eltimes along them are correct up to | percent compared to
reference rays, consisting of 100 points. In this setting, the
shortest path calculations and the shooting calculations take
roughly the same computation time and the traveltimes are
correct up to 1 percent for both methods. Although the
accuracy and the efficiency may be of the same order, the
results of the calculations are different. Intersections of
raypaths and triplications in the traveltime curves are found
correctly by the shooting method, but the shortest path
method will give ounly the first arrivals. On the other hand,

:\i\?&\ )
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F16. 2. Shortest paths in cell networks with 10 x 10 cells and 10 nodes per cell boundary. (a) Homogeneous modet.
(b) Linear velocity model ¢ = 1.0 + 0.01z.

(a)

F16. 3. Grid organization of a network. (a) 5 X 5 nodes, each one connected with at most eight neighbors. (b)
Shortest paths in a homogeneous model in the network of Figure 3a.
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the latter method has calculated the shortest paths to the
2450 other points in the same time. A careful consideration
of purpose, accuracy, and efficiency of the ray-tracing prob-
lem s therefore necessary. The efficiency and accuracy of
the shortest path method are given below.

The robustness of the shortest path method comes out in
the presence of discontinuities in the velocity field. In Figure
5 a salt dome structure is simulated with two homogeneous
layers with velocities 1.0 and 4.0 velocity is m/s, separated
by a curved interface. Refractions can be seen at the top of
the salt dome and diffracted paths at the flanks.

Finally, it is clear that the cell and the grid organization of
the network may be not the best choices to represent a
particular velocity model. Especially when the velocity

~ varies rapidly, grid refinement techniques can be applied to
make optimal use of the nodes and of the available memory
space.

SHORTEST PATH ALGORITHMS
AND THEIR EFFICIENCY

The following notation and definitions describe the short-
est path algorithms. G(N, A) is a graph, that is, a set N
containing n nodes together with anarc set A C N X N. A
network (G, D) is a graph with a weight function D:N X
N — IR that assigns a real number to each arc. D can be
represented by a matrix (d) (Figure 6). For ray-tracing
purposes, it can be assumed that D is symmetric by virtue of
reciprocity, d; = dj;, and nonnegative, d; = 0 for i € N and
dy = 0for i, j € N. By convention, d; = dj; = « denotes the
case when the nodes i and j are not connected. The forward
star of node i, FS(i), is the set of nodes connected with i. All
networks representing a velocity model used in this paper
are sparse: it can be assumed that each node is connected
only with the nodes in a small neighborhood of it. This
means that the number of elements in the forward stars is
bounded by a small number m, with m << n and m = O(1)
(n — ).

A path is a sequence of nodes and connections succeeding
each other. The traveltime along a path from one node to
another is defined as the sum of the weights of the connec-
tions of the path. A shortest path is a path with the smallest
possible traveltime. It may not be uniquely determined, as
observed from Figure 1. The shortest paths from the source
node s to all other nodes calculated with the available
algorithms form a so-called shortest path tree, with its root at
s and its branches connecting the other nodes. There is one
and only one way to reach a node from the source node
through such a tree and there are no loops. One consequence
of the tree structure is that the shortest paths are described
completely by an array of pointers: prec(i) is the preceding
node of 7 on the shortest path from s to ;/ with, by definition,
the source node s equal to its own predecessor. A shortest
path can be extracted from this array by repeating {j :=
prec(i), i := j} until i = 5. The traveltime along the shortest
path from s to i is denoted with 1£(i). The shortest traveltimes
from the point source s obey. Bellman’s (1958) equations:

n(i) =min [11) +dy]  LjEN (1a)
i
subject to the initial condition
tt(s) = 0. (1b)

The traveltime to a node i is the minimum of the traveltimes
to neighboring nodes j plus the weight of the connection
between both. These equations follow easily from the obser-
vation that if #(i) were not equal to

min {#(j) + dy],

JA
there would exist a path with a shorter traveltime than #(i).
The node j that minimizes #(j) + dj; is exactly the preceding
node of i on the shortest path from s to i: j = prec(i).
Bellman’s equations suggest a scheme of constructing short-
est traveltimes. All initial traveltimes are infinite except the

(b)

FIG. 4. Shortest paths in a smooth medium. (a) Shortest paths in a smoothly varying medium covered by a grid of
50 x 50 nodes, each one connected with at most 48 neighbors. (b) Raypaths in the same medium as in Figure 4a
from the same source location, calculated with a Runge-Kutta shooting algorithm.
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source node #(s) = 0. It is now possible to repeat the
nonlinear recursion

t1(§): = min [2(j) + dy] 2)
jeN

for all i € N until no traveltime can be updated any more.
This will certainly happen after many iterations. The short-
est paths from one node to all other nodes are then calcu-
lated. In fact, all efficient algorithms calculate all shortest
paths from one node simultaneously, although not all that
information may be useful.

Dijkstra’s (1959) algorithm arranges an order of nodes to
be updated so that after: exactly n iterations the shortest
paths are found. The nodes are divided in a set P of nodes
with known traveltimes and a set Q of nodes with not yet
known traveltimes along shortest paths from s. Initially, P is
empty and Q = N. The minimum traveltime node of Q is s.
It has a known traveltime [z£(s) = 0], so it can be transferred
to P.

The traveltimes of all nodes connected with s, all j €
FS(s), are then updated in agreement with equation (2). The
node in @ with the smallest tentative traveltime will not be
updated any more. It can therefore be transferred to P, and
the nodes from Q connected with it are again updated. This
process of finding the minimum tentative traveltime node,
transferring it to P, and updating its forward star is repeated
exactly n times. The complete shortest path tree is then
constructed. Dijkstra’s algorithm can thus be formulated as
follows:

(1) Initialization
Q:=N u(i):=xforallieN
P:=¢ 1uis):=0

(2) Selection

Find { € Q@ with minimal traveltime #1(i)

Fic. 5. Shortest paths and isochrons in a piecewise smooth
medium consisting of two homogeneous layers with veloci-
ties 1.0 (upper layer) and 4.0 (lower layer), separated by a
curved interface (heavy line) and covered by a grid of 50 X
50 nodes, each one connected with at most 120 neighbors.

(3) Updating

1(j) : = min {te(j), 1(i) + dy} for all jE FSE N Q
transfer i from Q to P

(4) Iteration check

If P= N stop
else go to 2.

Dijkstra’s algorithm is the classical algorithm for the
computation of shortest paths, but alternatives have been
developed that are several orders of magnitude more effi-
cient. To consider the computational efficiency of Dijkstra’s
algorithm, the number of operations can be counted. The
initialization step requires n operations to initiate the trav-
eltimes. The selection step requires # comparisons the first
time, but after each iteration one comparison less, because
the number of elements of Q decreases each iteration with
one. The updating costs at most as many operations as there
are elements in FS(i), namely, m. Therefore the total num-
ber of operations is

n+m=D+@n—=-2)+++1+mxn=0n?n-—>=),

so the computation time is essentially quadratrically depen-
dent upon the number of nodes. .

The selection of the minimum traveltime node [step (2)]
turns out to be the most time-consuming step of the algo-
rithm, because at each of the » iterations the entire set Q of
tentative traveltime nodes must be scanned. The scanning
could be omitted if the traveltimes in Q were ordered
completely in a waiting list. The minimum traveltime node
could be found immediately, since it would be the first of the
waiting list. However, each updating requires the updated
node to be shifted to its right position in the waiting list. This
costs again O(n) comparisons per iteration. Consequently, a
complete ordering does not improve the quadratic depen-
dence of the computation time on the number of nodes.

An alternative was introduced by Johnson (1977) and
described by Gallo and Pallottino (1986). First, all nodes in Q
with tentative traveltimes ® can be removed from the waiting
list, since they will never be the smallest. The rest of the
nodes in Q are then partially ordered in a so-called ‘‘heap.”
A heap is an array of elements a(i), i = 1, n, such that

a(i) = a(2i) : (3a)
and

a(i) <ai+ 1) (3b)

ap
i

Fic. 6. The definition of a network (left) and a shortest path
tree (right).
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fori =1, ..., n2. Consider, for instance, the traveltimes

77, 80, =, 75, 89, 97, 90, 93, », 70, 101, 99, 87, », 74, 91.

After the removal of the infinite traveltimes, these can be
ordered in a heap as

70, 75, 74, 80, 87, 77, 93, 89, 101, 99, 97, 90, 91.

The advantages of the heap structure come out when these
numbers are represented as a tree (Figure 7). Conditions (3)
are visualized in that each number is smaller than or equal to
the two numbers just below it. It can be seen that the number
of elements in one ‘‘generation’’ or horizontal layer grows
exponentially with the height of the heap. Therefore, there
are only log n generations for a heap of n nodes. The
minimum traveltime can be found immediately: it is the
uppermost number. When some finite traveltime is updated,
it may violate conditions (3), so it must ascend or descend to
restore the heap structure. Removing the minimum travel-
time node from the heap and adding an infinite traveltime
node whose traveltime has become finite can also be formu-
lated as descents and ascents. These cost at most log n
operations. The total number of operations for the caicula-
tion of a shortest path tree is now

logn+logn—1)+--+logl+mxn=0nlogn)

(n—>=),

which is much faster than the quadratical computation time
of the original Dijkstra algorithm.

The computational times are plotted for four different
shortest path algorithms on a series of networks in Figure 8.
The calculations were done on a GOULD PN9000 with one
CPU, 8 MB memory space, and a Unix operating system.
Only the shortest path calculation times are measured, not
the input and output of data. The networks are cell networks
with 10 nodes per cell boundary and the number of cells in
both x and z directions increasing one by one from 1 to 100.
For each of the hundred networks, one shortest path calcu-
lation is done for the four different algorithms: the original

75 74
80 a7 77 3

8 101 99 97 90 9

FiG. 7. The tree structure of a heap.

Dijkstra algorithm (DIJKSTRA), the Dijkstra algorithm with
Q organized as a heap (HEAP), and an alternative of Dijkstra
algorithm with J organized as a queue (LQUEUE), respec-
tively, as a so-called double-ended queue (LDEQUE). See
Gallo and Pallottino (1986) for details on LQUEUE and
LDEQUE. The original Dijkstra algorithm indeed appears to
have a quadratical computational complexity. In the appli-
cation to seismic ray tracing, LQUEUE and LDEQUE are
not as fast as promised in the literature on shortest paths.
HEAP is the most efficient algorithm; it has a computation
time that is almost linearly dependent upon the number of
nodes. This is caused by the sparseness of the networks used
in ray tracing: the heap size is much smaller than the set of
all nodes during the whole process.

CONSTRAINED SHORTEST PATHS
AND REFLECTION SEISMOLOGY

A restriction to seismic ray tracing with the shortest path
method is that only the absolutely shortest paths are found.
Later arrivais on the seismogram, like reflections and mul-
tiples, caused by discontinuities in the spatial velocity dis-
tribution, do not travel along the shortest path between the
source and the receiver and will not be found by a simple
shortest path algorithm. Yet they are of scientific and
economic importance because they contain additional infor-
mation about the earth’s structure. It is therefore necessary
to impose a constraint on the shortest paths, which can be
formulated as the demand to visit a specified set of nodes
that lie on the interface.

The solution *o the constrained shortest path problem is as
follows. First, all shortest paths from the source node s to all
other nodes are calculated with Dijkstra’s algorithm. The
traveltimes of the nodes on the interface are then selected,
remembered, and ordered in a heap. All other traveltimes
are again set to infinity. The set Q is reinitialized to N and P
is reemptied. Dijkstra’s algorithm is then restarted at step
(2), the selection step. The resulting traveltimes are the
traveltimes of shortest paths that are constrained to visit the
interface node set.

To see how this works, consider Figure 9. A model is
generated that consists of three homogeneous layers with
velocities 1.0, 1.2, and 1.4, separated by curved interfaces

200.0 COMPUTATION TIMES HEAP,DIJKSTRA, LQUEUE, LOEQUE
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Fi6. 8. Computation times of various shortest path algo-
rithms as a function of the number of nodes.
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(heavy lines). The shortest paths from one source point at
the earth’s surface are shown in Figure 9a. It is known a
priori that points with a nonzero scattering coefficient are
real physical scatterers. Nodes on interfaces or, more ex-
actly, nodes with neighbors with a much different velocity
are real scatterers, so they should “‘reflect’ shortest paths.
Therefore, they are selected and gathered in a new source
node set, before restarting the algorithm. The result is shown
in Figure 9b. The shortest paths in the upperniost layer are
reflections on the first interface. They satisfy approximately
the law of incidence and reflection. The paths in the second
layer are exactly the same paths as the unconstrained
shortest paths in Figure 9a. This is no surprise, because
these paths automatically satisfy the constraint to visit one
of the interface nodes. It can be seen that Snell’s refraction
law holds, as far as permitted by the network structure. The

@

procedure of collecting scattering nodes in a new source
node set and restarting the algorithm can be repeated ad
infinitum, so one can calculate as many multiple reflections
as desired. Figure 10 shows the continuation of the con-
strained shortest paths of Figure 9b, now under the con-
straint to visit the second interface. The paths are the
shortest ones that visit the first interface first and then the
second interface. In the third layer, both constraints are
again satisfied automatically. The paths in the first and
second layers are reflections on the second interface.

The physical significance of the results follows from a
combination of Huygens’ principle and Fermat’s principle. The
paths are shortest in traveltime between the source and the
interfaces and between the interfaces and the receiver, and the
points on the interfaces connecting the shortest path segments
act as secondary sources, provided they are real scatterers.

(b)

FiG. 9. Constrained shortest paths. (a) The primary field in a medium with constant velocities 1.0 {(upper layer), 1.2
(middle iayer), and 1.4 (lower layer) and a grid network of 50 X 50 nodes, each one connected with 100 neighbors.
(b) The secondary field, consisting of the second part of paths that are forced to visit the first interface.

U .

FiG. 10. Reflections on the second interface in the model of Figure 9.
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ACCURACY OF THE SHORTEST PATH METHOD

By forcing seismic raypaths to follow the connections of a
network, one introduces errors in the ray geometry and in
the traveltime along the ray. These errors are mainly caused
by two factors: the space discretization and the angle dis-
cretization.

Clearly, one error source is the sampling of the velocity
field by a finite number of nodes. Rapid variations in the
velocity field may be missed by a coarse grid, so that the
shortest paths consist of line segments that are too long to
give a reasonable approximation to the curved raypaths.

A simple example shows that the space discretization is
not the only error source. Consider, for instance, a homo-
geneous velocity model covered by a grid network, with
each node connected only with its north, east, south, and
west neighbors. Such a network could imitate the streets of
New York, with its streets and avenues perpendicular to
each other. The shortest paths in two such networks are
shown in Figure 11, together with the traveltime contours.
The network of Figure 11a has 10 X 10 nodes; the network of
Figure 11b 50 X 50 nodes. It is obvious that increasing the
number of nodes does nothing to the accuracy of the resuits:
the traveltime contours are straight lines instead of circular
wavefronts in both networks. One could hope that the
shortest paths would approximate the straight raypaths in
the homogeneous model, but they are far from unique, so a
great number of paths have the same (shortest possible)
traveltime.

Therefore, the error in the traveltime and the ray geometry
depends upon the number of nodes and the number of
-connections per node. When the average Euclidian distance
between two connected nodes is denoted with dx and the
average smallest angle between two connections leaving one
node with 8¢, the traveltime error E = T{exact} — T(approx-
imate) obeys an asymptotical relation of the type

E=ogy +o1gdx + ap; 3 + a208x2 + ay; 8xdd + ()L()zﬁd)z

+ Z Ol,jsxi&bj,

i+j>2

6x, So6— b), 4)

where a;; are numbers that depend upon the variation of the
velocity field and the network. It can be shown that

ag =y = gy = 0.

so that the traveltimes are correct up to the second order in
the space and angle discretization.

This result will not be proven here, but it can be illustrated
in a linear velocity model. Such a model can be thought to be
more or less representative for sufficiently smooth models,
since they can be approximated by linear velocity regions for
small 8x. Effects of the discretization of nonsmooth models
are visible at the interfaces in Figures 9 and 10.

The calculations of Figure 2b are done for different space
and angle discretizations. The traveltimes in the velocity
field ¢ = 1.0 + 0.0lz are computed in a series of cell
networks, with n,, the number of cells in the x and z
direction, increasing from 2 to 50 with step 1, and n,, the
number of nodes per cell boundary, for each n,, increasing
from 2 to 15. n, is a measure for 1/8¢ and n,, for 1/8x. The
traveltimes are compared with the analytical formula for
traveltimes in constant gradient media (Cerveny, 1987). The
absolute difference is averaged over all nodes farther away
from the source than 10 and divided by the computed
traveltime. This average relative traveltime error is plotted
logarithmically in Figure 12. It can be seen that the error is
smaller than 0.1 percent for moderately large networks. This
error can be compared with the computational complexity
by counting the total number of nodes » as a function of n,
and n,:

n=2n.(n, + nf).

For a cell network of 30 X 30 cells and 10 nodes per cell
boundary, the average relative traveltime error is 0.0939
percent. The total number of nodes is 18 600 and the CPU
time for this calculation is 31.7 s for the LDEQUE algorithm
and 32.2 s for the HEAP algorithm (see Figure 8). The
logarithmic plot of the average relative traveltime error
(Figure 7) shows that the error curves tend to a 1/n? relation

s

(a)

(b)

FiG. 11. Shortest paths in the streets of New York. {a) 10 X 10 nodes. (b) 50 X 50 nodes.
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for n, — . This illustrates the fact that agy = ay = 0.
ayp = 0 can be illustrated in the same way.

CONCLUSIONS AND DISCUSSION

The shortest path method is a flexible means of calculating
seismic raypaths and shortest traveltimes. It can easily be
coded in FORTRAN, because of the general abstract formu-
lation of network theory. There is no need for extra software
for complicated structures, nor for three dimensions. The
method constructs a global ray field to all points in space, so
there are no problems with the convergence of trial rays
toward a receiver. The method finds the absolute minimal
traveltime path instead of getting stuck in a local minimal
traveltime path. Later arrivals on the seismograms can be
found by an extra run of the shortest path algorithm. The
shortest path method has a computation time that is almost
linearly dependent upon the number of nodes. Its accuracy is

error curves/nx=2(1)50
Tt T

-1.00 .

-2.00 -

log10 (error)

. =3.00

T

F

PRI | PRI | a i, i
0.50- 0.75 1.00 1.26 1.50
log10 (nr)

-4.00 L
000 025

Fic. 12. The traveltime error as a function of the number of
nodes and the number. of connections per node in a linear
velocity model covered by cell networks.

quadratically dependent upon the number of points per
coordinate direction and the number of connections per
point. Even when this may not be enough for a few rays, the
shortest paths are good initial guesses for additional bending.
The multiple raypaths that can be seen in Figure 4b cannot
be modeled with the shortest path method, at least not using
the suggestions of the section on **constrained shortest paths
and reflection seismology.”
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