
Exercises and Investigations: Set 3

The “Exercises and Investigations” sets for this class are designed both to reinforce
mathematical concepts and to lead you to think creatively about problems. You should
clearly explain what you tried and how approached each item, even if you do not get to
a final solution. Also, it often happens that you gain new insight into an old problem
as time goes on and you are thinking about things from a new angle. So, as weeks go
on, you may choose to go back and re-explore old problems in place of new ones.

1. Several times in class, we have used the following fact: If a polynomial whose
coefficients are integers does not have a zero mod n for some n, then it does not
have a zero in the integers. Explain why this fact is true. [Hint: Show that if a
polynomial with integer coefficients has a zero in the integers, then it also has a
zero mod n.]

2. Give a specific example of a polynomial with integer coefficients that does not
have any zeros in the integers but that has a zero mod n for some n. [Hint: Try
x2 + 1 as your polynomial and n = 5.] So the converse of the statement from the
first problem is not necessarily true.

3. Fix a prime number p. Fermat’s little Theorem says that if a is an integer not
divisible by p, then ap−1 ≡ 1 mod p. In other words, ap−1 − 1 = pk for some
integer k. Often Fermat’s little Theorem is proved using group theory, a topic we
have not discussed in this course. Instead, we are going to find a more elementary
reason for Fermat’s little Theorem. (If you’ve taken a proofs course before, you’ll
notice that what we end up doing is a proof by induction, but we won’t assume
that you are familiar with that terminology or approach here.)

(a) Verify that Fermat’s little Theorem holds in the simplest case possible,
namely when a = 1.

(b) By our beginning exercises on congruences, it suffices to prove Fermat’s little
Theorem for a = 1, . . . , p − 1. Explain why it is also sufficient to show the
following: If we know Fermat’s little Theorem holds for a number a, then we
also know Fermat’s little Theorem also holds for a + 1.

(c) Now, suppose Fermat’s little Theorem holds for a number a (for example
a = 1). Show that (a + 1)p ≡ a + 1 mod p [Hint: You may use, without
proof, the Binomial Theorem, which says that for any integers x and y and
any positive integer n, (x + y)n =

∑n
j=0

n!
j!(n−j)!

xjyn−j, i.e. the when we

expand (x + y)n, the coefficient of the term xjyn−j is n!
j!(n−j)!

. For a prime

number p and 0 < j < p, why is this number divisible by p?]

(d) Put the previous parts of the exercise together to conclude that Fermat’s
little Theorem holds.

(e) What would go wrong if we tried to replace p by a non-prime number in the
statement of Fermat’s little Theorem?

4. We have already covered the fact that a polynomial with complex coefficients has
a zero in the complex numbers (for example, by Gauss’s proof). We also can easily
come up with polynomials with integer coefficients that don’t have zeroes in the
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integers. (For example x2+1 can’t have a zero in the integers, since a2+1 ≥ 1 > 0
for all real numbers a). In this problem, we’ll use modular arithmetic to find more
examples of polynomials that do not have zeroes in the integers.

(a) Show that the polynomial x4 + 5x3 − 15x2 − 10x + 2 has no zeroes in the
integers. [Hint: Work mod 5, and don’t forget Fermat’s little Theorem.]

(b) Show that the polynomial 2x12 + 21x11 − 7x10 − x6 + 7x5 + 14x4 + 3 has no
zeroes in the integers. [Hint: Work mod 7, and don’t forget Fermat’s little
Theorem.]

(c) Produce a family of infinitely many polynomials with integer coefficients that
don’t have zeroes in the integers. [Hint: Try to generalize the ideas you used
in the previous two parts. There are lots of different possibilities that work
here.]
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