MATLAB Cheat Sheet

Miscellaneous useful notes
1. Text after a percent sign (%) represent comments, and are ignored by the code.

2. Text in parentheses is evaluated by MATLAB prior to other text, in a manner identically to how parentheses
are treated in math.

3. The two basic windows in MATLAB for the user to work in are the Command Window and the Editor.
The Command Window is for quick commands that the user wishes to see executed; it acts out one line of
code at a time, and prints the result unless that result is suppressed by the user. The Editor is for writing
larger pieces of code in the form of functions or scripts, both of which are described toward the end of this
document.

4. To suppress printing of command output, a simicolon (;) can be placed after the command. E.g., x=4 will
assign the value 4 to x, and print x=4 to the screen. x=4; will assign the value 4 to x, without printing x=4
to the screen.

5. To clear variable assignments, type clear nameOfVariable. E.g., clear x will make it so that x no longer
has any assigned value. To do this for all variables, type clear all.

Data types

The most important data types in MATLAB are doubles, strings, and Booleans; these are MATLARB’s default
numeric, text, and logical data types. Below, examples of each of these are given - doubl and doub2 are doubles,
strl and str2 are strings, and bool and boo2 are Booleans.

doubl1l=3.0;doub2=1;
strl='hello';str2="h"';
bool=false;boo2=5>2;

Arrays

An array is a list of data types. It can be multidimensional, though MATLAB works most easily with 1- and
2-dimensional arrays. Arrays can be defined with in several ways. Below, r1 and r2 each represent a single-row
array - ri is defined explicitly, and r2 is defined with a handy MATLAB notation. c1 and c2 are similarly defined
single-column arrays. M1 is a 2-dimensional array.

rl=[1,2,3,4,5]1%Commas to separate entries in an array within a row.

r2=1:2:9%This is equivalent to writing r2=[1,3,5,7,9]. The notation is start:step:stop.
%A notation start:stop can also be used, which simply means start:l:stop.

cl=[1;2;3;4;5]%semicolons to separate rows.

c2=(1:2:9) '$The ' symbol means "transpose", i.e., switch the role of rows and columns.

M1=[1,2,3;4,5,6;7,8,9]1%M1 is a 2-dimensional array.

To select an element of an array, the format is ArrayName (index) for a 1D array, and
ArrayName (rowIndex,colIndex) for a 2D array. The lowest array index in MATLAB arrays is the number 1.

r2(2)%Gives 3, since the second entry in r2 is 3.
c2(4)%Gives 7, since the fourth entry in r2 is 3.
M1(3,2)%Gives 8, since M1(3) is [7,8,9] and [7,8,9](2) is 8.

Finally, arrays can be concatenated, which means added onto. In the other direction, subarrays of a given array
can be selected. There are variations on both of these operations, but the most basic form of each is demonstrated
below - more detail can be found online.

rbig=cat (2,rl, r2) %cat (
%$This gives rbig=][
cbig=cat (1,cl,c2) %cat (
%$This gives cbig=][
r2small=r2(2:4) %r2smal

,arrayl,array2) concatenates arrayl and array2 row-wise.
,2,3,4,5,1,3,5,7,9].

,arrayl,array2) concatenates the two specified arrays column-wise.
72;3;4;5;1;3;5;7;9].

2
1
1
1
1=[3,5,7].

Operators

MATLAB’s basic arithmetic operators are addition (+), subtraction (-), multiplication (*), division (/), and
exponentiation ("), and modulo (mod(a,b)). These are used to combine several numbers or arrays to get a new
number or array. By default, these operations act on arrays as they would act on matrices for matrix multiplication.
This does not matter for addition, subtraction, or modulo, but does matter for the others. To perform the same
operation element-wise, put a dot in front of the operation (.*, ./, .”). Examples are demonstrated below.

2+3%outputs 5.

2x3%outputs 6.

rl+rl%outputs [2,4,6,8,10].

rlxrl%outputs error, since dimensions aren't consistent for matrix multiplication.

rl.xrl%outputs [1,4,9,16,25] by element-wise multiplication.

rlxcl%outputs 55, since the matrix multiplication gives 1x1+2%2+3%3+4x4+5x5=55

clxrl%outputs [1,2,3,4,5;2,4,6,8,10;3,6,9,12,15;4,8,12,16,20;5,10,15,20,257,
%$since this is what the matrix multiplication gives.

[1,1;1,1]172%outputs [2,2;2,2] by matrix multiplication.

[1,1;1,1].72%outputs[1,1;1,1] by element-wise exponentiation.

MATLAB’s basic relational operators are equals (==), greater than (>), less than (<), greater than or equal to
(>=), less than or equal to (<=), not equal (=), and is equal(isequal(M1,M2)). All of these give a Boolean of
true (1) or false (0) as they would evaluate to mathematically. The isequal() function is defined specifically for
arrays, and gives true if its array arguments are equal to one another. Examples are demonstrated below.

4==2x2%evaluates to true, since 4=2%2.

4==2x3%evaluates to false, since 2x3 does note equal 4.

4>2%evaluates to true, since 4 is greater than 2.

2<2%evaluates to false, since 2 is not less than itself.

2<=2%evaluates to true, since 2 is less than or equal to itself.
4~=2%evaluates to true, since 4 is not equal to 2.

2~=2%evaluates to false, since 2 is not not equal to itself.

isequal (M1,M1) $evaluates to false, since M1l is the same array as itself.
isequal (rl,r2) %evaluates to false, since these two arrays are different.

MATLAB’s basic logical operators are and (&), or (|), and not (7). & and | take two or more Booleans and
output a new Boolean. ~ takes a single Boolean and outputs a new Boolean. They all play the same role as they
do in language. Examples are demonstrated below.

true&truetoutputs true.

true&false%outputs false.

false&true%outputs false.

false&false%outputs false.

true|true%outputs true.

truel| false%outputs true.

false|true%outputs true.

false|false%outputs false.

~true%outputs false.

~false%outputs true.

2<214>2%outputs true, since this is the same as falsel|true.
~2<3%outputs false, since this is the same as ~true.
(2<214>2) & (~2<3) Soutputs false, since this is the same as true&false.

Functions

A function is anything that takes one or more data types as an input, and either performs a task based on that
input, or gives one or more data types as an output. Some examples of functions already built into MATLAB are:

sin(x) %takes x as an input and gives the sine of x as an output.

isequal (x,y) %$takes two doubles x and y as inputs and gives true or false as an output,
%depending on whether they are equal.

plot (x,y) %takes two arrays x and y as inputs and performs a task, namely, plots y against x.

It is extremely useful to be able to create your own functions. To do so in MATLAB, you create a text file that is
formatted in a way that MATLAB understands, and save it with the extension ".m" in a folder where MATLAB

knows to look (The command path in MATLAB will display all folders that MATLAB looks in. The command
userpath will display the current working directory for MATLAB, which is one of the folders that MATLAB looks
in and is the default location where MATLAB saves files. The text document can be written using any basic text
editor, including Notepad. MATLAB also has a built-in text editor that can be accessed through New->function
from MATLAB.

The basic format of the text document for any MATLAB function is as follows (there are variations on this):

function outputVariableName=functionName (inputVariablel, inputVariable2,...)
body%Code maninpulating input variables
outputVariableName=somethingFromBody

end

There should be only one function per .m file, and the name of the .m file should be the same as the function”s
name. An example function is given below.

$Function: finalHeight (initialHeight,initialVel,grav,time) returns the final position of a particle with known
%$initial position, initial velocity, and acceleration after a given time,
%$assuming that that particle obeys the kinematic equation for constant acceleration.

%This file would have to be saved in one of the MATLAB path folders, with the name, "finalPos.m"

function fin=finalHeight (initialHeight,initialVel, grav,time)

y=initialHeight+initialVelxtime+ (1/2)gravxtime”2

fin=y

end

If the above function is saved as indicated, and in MATLAB you now type:

x0=10;v0=2;a=3;t=5;
x=finalPos (x0,v0,a,t)

MATLAB will use the programmed function, and store x=57.5, since 10+2*5+(1/2)*3*5°2=10+10+37.5=57.5.
Note that as you program write more functions and save them in the MATLAB folders, your copy of MATLAB
effectively has an ever-growing catalogue of functions that you can use.

Conditionals You will frequently want your functions to behave differently depending on what conditions your
inputs satisfy. For instance, in the finalHeight function above, if the ground is represented by y=0, I may want my
function to reflect that my particle will stop dropping if it hits the ground. The keywords if (), elseif (), and
else are used to put conditionals in functions. The format is:

if (statement that can evaluate to true or false)
body to execute if statement is true
elseif (other statement that can evaluate to true or false)%There can be any number >=0 of elseif
%$statements and bodies.
body to execute if statement is true
else
body to execute if all preceding statements are false.%else statements are not always needed,
$but are usually a good thing to include with if statements.
end

The finalHeight function above is modified below to include an if statement:

function fin=finalHeight (initialHeight,initialVel, grav,time)
y=initialHeight+initialVelxtime+ (1/2) xgrav+time”2
if (y<=0)
fin=0;
else
fin=y;
end
end

Loops You will frequently want your functions to perform a given task multiple times. Loops cause a chosen
portion of your program to do this. There are two types of loops - for loops cause a portion of your program to

repeat over a set number of iterations, and while loops cause your program to repeat while a given condition is
true. The basic format for both of these loops are given below:

$%$FOR LOOP FORMATS%

for LoopVariable=start:step:stop%if step=1, format is for LoopVariable=start:stop
body%executes, starting with LoopVariable=start, ending when LoopVariable>stop.

end

$SWHILE LOOP FORMATSS

while (statement that can evaluate to true or false)%Parentheses not necessary
body

end

A function using an example of each is given below. Both functions do the same thing, namely, give an array
containing the squares of all integers between the integers low and high that are input into the function.

function sgArray = sgArrayFor (low,high)%for version
arr=[];
for i=low:high
arr=cat (2,arr,1"2);
end
sgArray=arr;
end

function sgArray = sgArrayWhile (low,high)%while version
i=low;
arr=[];
while (i<=high)
arr=cat (2, arr,1"2);
i=1i+1;
end
sgArray=arr;
end

Scripts

A script in MATLAB is simply a sequence of commands that could be executed from the command window, but
which are instead saved to a text file with the extension ".m". As with functions, the .m file can be created using
any text editor, and MATLAB has a built-in editor for this purpose which can be accessed by clicking on "New
Script". The .m file must be saved in one of the MATLARB path folders.
To run a saved script from the Command Window, type the command:

run ScriptName.m

Doing this is equivalent to typing all of the commands in the script one-at-a-time from the command window.
That’s all there is to it. An example script is written below.

%$Save this script as MySquareArray.m. Once this is done, can run it by typing
%"run MySquareArray.m" in the Command Window.

%$Note that script assigns values to variables Jjust as the Commmand Window does.

$Note also that it has access to functions that you have written.

a=3;b=5;

MyArray=sgArrayFor (a,b)

