
Python Cheat Sheet

Miscellaneous useful notes

1. Text after a pound sign (#), as well as text between sets of three single quotes, ''', are comments, and
are ignored by the code.

2. Text in parentheses is evaluated by Python prior to other text, in a manner identical to how parentheses
are treated in math.

3. Most Python IDEs (i.e., most programs used when writing Python), including Spyder and PyScripter,
have to environments to work in - the editor and the command window. The editor is for writing large
pieces of code that are eventually saved as Python �les, i.e., text in the editor represents what will become
your program. The command window is for writing quick pieces of code to see them executed, usually
one line at a time.

4. The most useful extensions to Python are NumPy, SciPy, and matplotlib. All of the functionality of these
can be accessed in Python by using the import command, as in the following code.

import numpy as np

import scipy as sp

import matplotlib as mpl

#The ' as ' keyword j u s t l e t ' s you c a l l these packages by a sho r t e r name when
#using them , as in the l i n e o f code below .
p r in t np . abs (−5)#This would p r in t 5

Resources

The following are Python distributions - after you download and install them, Python and most of its numerous
useful extensions will work on your computer.

WinPython http://winpython.sourceforge.net/. Windows XP/7/8.

Anaconda https://store.continuum.io/cshop/anaconda/. Linux: 64-bit and 32-bit. Windows: 64-bit
and 32-bit. Mac OS X: Intel 64-bit.

Additionally, Codeacademy is a great place to get started with Python, http://www.codecademy.com/. It
has simple step-by-step lessons that will familiarize you with the syntax and �feel� of the language (and of
programming in general).

Data types

The most important data types in python are int, �oat, str, bool, list, and numpy.array. Lists are containers
of any miscellaneous combination of the other data types. Arrays are containers of either integers or doubles.
Lists are easier to work with than arrays, but code that uses them is much slower. An example of each data
type is below.

import numpy as np

int1=5; int2=−5; #int1 and in t2 are in t s , i . e . , i n t e g e r s .
float1=5.0; float2=23.2; #f l o a t 1 and f l o a t 2 are f l o a t s , i . e . , decimal numbers .
str1= ' Hel lo ' ; str2= ' 1 ' #st r 1 and s t r 2 are s t r i n g s , i . e . , groups o f cha ra c t e r s .
bool1=False ; bool2=5>2 #bool1 and bool2 are bools , i . e . , th ings that are True or Fal se .
list1 =[1 ,2 .56 , "He l lo " , True] #l i s t 1 i s a l i s t . Note mul t ip l e data types .
array1=np . array ([2 . 0 , − 0 . 5 , 2 . 5 6 , 2 . 2]) #array1 i s an array . Note a l l f l o a t s .
' ' '

To acc e s s d i f f e r e n t e lements in a l i s t or array , use [element number] .
The f i r s t element has element number=0.
For example , the l i n e below i s a boolean with value True .
' ' '

list1 [1]== array1 [2]

Note the two di�erent types of types of �equals� that are used in the above code. A single-equals, =, is used for
assignment of a value. A double-equals, ==, is used for comparison, just as <= or >= would be.

1

http://winpython.sourceforge.net/
https://store.continuum.io/cshop/anaconda/
http://www.codecademy.com/

Functions

A function is anything that takes 0 or more data types as an input, and performs a task (based on those
inputs). Several functions are already built into Python and its extensions. For instance, numpy.sin(x) is a
function built into numpy that �nds the sine of the input x.

You can de�ne functions in Python using the keyword def. The format of a function is as follows:

de f functionName (inputVariable1 , inputVariable2 , . . .) :
body#Code manipulat ing input v a r i a b l e s
re turn outputVariableName#This l i n e i s not r equ i r ed f o r a l l f un c t i on s

Some example functions are de�ned below. Note the use the colon and of tabs, required as an integral part of
Python syntax. Also note the use of the keyword return- whatever comes after this word is the output of the
function.

#Pr int s the word h e l l o
de f sayHello () :

p r i n t "He l lo . "

#Pr int s x twice
de f printTwice (x) :

p r i n t x

pr in t x

#Outputs the sum of a and b
de f plus (a , b) :

r e turn a+b

#Takes two s t r i n g s , and combines them into a s i n g l e s t r i n g
de f concatenate (a , b) :

r e turn a+b

' ' '

Note that the s c r i p t s f o r p lus () and concatenate () are the same !
This i s because Python i s smart enough to o f t en l e t you not worry about which
data type you are being used . E. g . ,
a=2;b=3;a+b −−−> Python g i v e s 5
a='Hel lo ' ; b=' world ! ' ; a+b −−−> Python g i v e s "He l lo world ! "
' ' '

Conditionals and logical operators

You will frequently want your functions to behave di�erently depending on what conditions your inputs satisfy.
Conditionals are statements that tell the functions to do just this. The keywords that signal them are if,
elif, and else. As with functions, a colon and tabs are required as part of the syntax of a conditional. The
format of a conditional is as follows:

i f condition1 :#cond i t i on1 i s something that can eva lu te to True or Fa l se :
body1#Code to do i f cond i t i on1==True

e l i f condition2 :#cond i t i on2 i s something that can eva lu te to True or Fa l se :
body2#Code to do i f cond i t i on2==True

e l s e :
body3#Code to do i f none o f the cond i t i on s in the i f and e l i f ' s were True

#There can be any number o f e l i f statements , i n c l ud ing 0 . There can be 0 or 1 e l s e statements .

Some trivial functions that apply this concept are given below. Note the use of the logical operators and, or,
and not. These behave exactly as you would expect.

#Pr int s "a i s 1 !" i f a==1
def printIfOne (a) :

i f a==1:
p r in t "a i s 1 ! "

#True i f a==1, Fa l se otherwi se
de f decideIfOne (a) :

i f a==1:
return True

e l s e :
r e turn False

#True i f a==1 or a==2, Fal se otherwi se . Uses e l i f .
de f decideIfOneOrTwoVersion1 (a) :

2

i f a==1:
return True

e l i f a==2:
return True

e l s e :
r e turn False

#True i f a==1 or a==2, Fal se otherwi se . Uses or .
de f decideIfOneOrTwoVersion2 (a) :

i f a==1 or a==2:
return True

e l s e :
r e turn False

#Returns True i f at l e a s t one o f b or c i s b i gge r than a , Fa l se otherwi se .
#Uses not , and .
de f aNotTheBiggest (a , b , c) :

i f not (a>=b and a>=c) :
r e turn True

e l s e :
r e turn False

(As a sidenote, a shorthand for not (a==b) is a!=b).

Loops

You will frequently want your functions to perform a given task multiple times. Loops cause a chosen portion of
your program to do this. There are two types of loops - for loops and while loops. For loops cause a portion
of your program to repeat for a set number of iterations, and while loops cause a portion of your program to
repeat while a given condition is met. The format for each of these loops is as follows:

#FOR LOOP FORMAT
fo r var1 in list1 :

body

#e . g . , i f l i s t 1 =[1 , 3 , 5] , then body execute s −
#Fi r s t with var1=1, then with var1=3, and f i n a l l y with var1=5.

#WHILE LOOP FORMAT
whi le condition1 :

body

#The whi le statement ac t s j u s t l i k e an i f statement , except that when the body
#i s f i n i s h ed , i t r epea t s the i f statement , u n t i l cond i t i on1 i s Fa l se .

Some trivial blocks of code that apply these concepts are given below. Note the use of the rangefunction. This
is a very useful built-in Python function, which returns a list as follows: range(num)=[0,1,2,...,num-1].

#FOR LOOP FORMAT
fo r var1 in list1 :

body

#e . g . , i f l i s t 1 =[1 , 3 , 5] , then body execute s −
#Fi r s t with var1=1, then with var1=3, and f i n a l l y with var1=5.

#WHILE LOOP FORMAT
whi le condition1 :

body

#The whi le statement ac t s j u s t l i k e an i f statement , except that when the body
#i s f i n i s h ed , i t r epea t s the i f statement , u n t i l cond i t i on1 i s Fa l se .

Python also has a very handy shorthand that can be used in place of many for loops when workin with lists. It
is demonstrated in the code below. Sidenote: note the use of the % operator in the code.

#Note : The % operat ion i s c a l l e d 'modulo '

#a%b g iv e s the remainder o f a/b .
#E. g . , 11/3 = 3 remainder 2 , so 11%3 = 2 .

list1 =[1 ,2 , 3 , 4 , 5 , 6 , 7 , 9 , 10 , 11 , 12]

listLists1 = [[1 , 2 , 3] , [4 , 5 , 6] , [7 , 8 , 9] , [1 0 , 1 1 , 1 2]]

list1Odd=[item f o r item in list1 i f item%2==1]#Get a l l odd numbers in l i s t 1

listLists1First=[item [0] f o r item in listLists1]#Get 1 s t number o f each s u b l i s t in l i s t L i s t s 1

#The above code g i v e s :
#l i s t1Odd =[1 ,3 , 5 , 7 , 9 , 11]
#l i s t L i s t s 1 F i r s t =[1 ,4 ,7 ,10]

3

Extra - List manipulation and array manipulation

As mentioned earlier, the two most important �big� data types in Python are lists and numpy arrays. (These
are big in the sense that they contain other data types). The default operations (+, *, etc.) act di�erently with
each of these data types. With lists, they specify concatenation (patching together), whereas with arrays, they
specify element-wise arithmetic. However, both either operation can be used with both data types. The code
below demonstrates how to do various operations with each.

import numpy as np

array1 = np . array ([1 , 2 , 3])
array2 = np . array ([4 , 5 , 6])

list1 = [1 , 2 , 3]
list2 = [4 , 5 , 6]

' ' 'Element−wise ope ra t i on s ' ' '

#Added : Gives [5 7 9]
#Mul t ip l i ed : Gives [4 10 18]
#Mult ipl iedBy4 : Gives [4 8 12]
#Subtracted : Gives [−3 −3 −3]

arraysAdded = array1 + array2

arraysMultiplied = array1 * array2

array1MultipliedBy4 = array1 * 4
arraysSubtracted = array1 − array2

listsAdded = [list1 [item] + list2 [item] f o r item in list1]
listsMultiplied = [list1 [item] * list2 [item] f o r item in list1]
list1MultipliedBy4 = [4 * item f o r item in list1]
listsSubtracted = [list1 [item] − list2 [item] f o r item in list1]

' ' ' Concatenation ' ' '

#Sel fConcatenated : Gives [1 2 3 1 2 3]
#Concatenated : Gives [1 2 3 4 5 6]

array1SelfConcatenated = np . append (array1 , array1)
arraysConcatenated = np . append (array1 , array2)

list1SelfConcatenated = list1 * 2
listsConcatenated = list1 + list2

There are also some shorthands for initializing lists and arrays to be between two numbers, with a given stepsize
or number of steps between each number. Most of these are variations on the function range. A demonstration
is below.

import numpy as np

' ' ' range () and np . arange () ' ' '

#1 argument : Star t = 0 , End = (argument−1) .
#2 arguments : S ta r t = 1 s t argument , End = (2nd argument−1) .
#3 arguments : S ta r t = 1 s t argument , End = (2nd argument−1) , Step = 3rd argument .
' ' 'np . l i n s p a c e () ' ' '

#Star t = 1 s t argument , End = 2nd argument , Number o f s t ep s = 3rd argument .

list1 = range (10)
list2 = range (4 ,10)
list3 = range (4 , 10 , 3)

#l i s t 1 = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]
#l i s t 1 = [4 , 5 , 6 , 7 , 8 , 9]
#l i s t 3 = [4 , 7]

array1 = np . arange (10)
array2 = np . arange (4 ,10)
array3 = np . arrange (4 , 10 , 3)
array4 = np . linspace (4 , 10 , 5)

#array1 = np . array ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])
#array2 = np . array ([4 , 5 , 6 , 7 , 8 , 9])
#array3 = np . array ([4 , 7])
#array4 = np . array ([4 . 0 , 5 . 5 , 7 . 0 , 8 . 5 , 1 0 . 0])

4

Extra - Plotting

Plots are usually made using matplotlib. The code below demonstrates how to make line plots and scatter plots
of two lists or arrays of data against one another, as well as how to plot functions. How to display and save the
plots is also demonstrated.

import numpy as np

import matplotlib . pyplot as plt

x = [1 , 2 , 3 , 4 , 5 , 6 , 7]
y = [21 , 15 , 14 , 19 , 10 , 8 , 12]

#Line p lo t : y aga in s t x .
#Show the p lo t .
plt . plot (x , y)
plt . show ()

#Clear the p lo t
plt . clf ()

#Scat t e r p l o t : y aga in s t x .
#Label p l o t .
#Change minimum/maximum x/y that i s shown on p lo t .
#Save the p lo t .
plt . scatter (x , y)
plt . title ('y vs . x ')
plt . xlabel ('x data ')
plt . ylabel ('y data ')
plt . xlim (xmin=0, xmax=8)
plt . ylim (ymin=0, ymax=22)
plt . savefig ('myPlot . png ')

#Clear the p lo t
plt . clf ()

#Plot y = s in (t) and y = cos (t) . S ca t t e r y = cos (t) .
#Show the p lo t .

#Make tPlot dense (1000 po in t s) , so p l o t s w i l l look cont inuous .
tPlot = np . linspace (−4*np . pi , 4* np . pi , 1000)
#Make tS ca t t e r not that dense , so w i l l be ab le to d i s t i n gu i s h s c a t t e r po in t s .
tScatter = np . linspace (−4*np . pi , 4* np . pi , 2 0)
y1 = np . sin (tPlot)
y2 = np . cos (tPlot)
y3 = np . cos (tScatter)
plt . plot (tPlot , y1)
plt . plot (tPlot , y2)
plt . scatter (tScatter , y3 , color= ' red ')
plt . show ()

The plots generated by the above code are below. Only the middle one was saved by the code as a picture. The
other two were shown in the IDE being used.

5

