We can determine **temperature, power emitted (luminosity), distance, lifetimes, ages** and **metal abundances** of stars by measuring their flux in two different wavelengths (e.g. Blue and “Visible”; Blue and IR, Red and IR, UV and Red etc...).
HR Diagram is a plot of brightness or flux from one band against the “color” of the star(s). Color is the ratio of fluxes in two wavelengths (B-V, V-R, etc). How your data falls on this plot will determine stellar age, lifetime, etc.
HR diagrams

Hyades Cluster
Underlying physics model of main sequence (MS) stars
Physics: Why this works

Stars are blackbodies; light is emitted in a distinct pattern of radiation for a given temperature.

\[B_\nu(T) = \frac{2\hbar\nu^3}{c^2} \frac{1}{e^{\hbar\nu/kT} - 1} \]
White lines are filter bandpasses. Different amounts of flux are emitted in each band for a given temperature.

Flux is the amount of radiation we receive at Earth (\simLuminosity/distance2).
Mass and Temperature

• What determines MS stellar surface temperature?
 ➔ Mass

• Each layer in star is in balance between gravity pressing down and pressure generated from core.

• More massive stars need more pressure generated to support star which comes from hot photons generated by nuclear reactions in core (fusion of hydrogen into helium)

• Result – big stars have hotter surface temperature and emit more photons.

• Other than these physics equations, how do we know that hotter stars are more massive?
Luminosity and Mass Relationship

Masses are measured from MS binary stars and Kepler’s 3rd law \((M_1+M_2)\sim a^3/p^2\)
Implications of Luminosity and Mass Relationship

Lifetime of star is simply:

\[\text{Lifetime} = \text{fuel/power output} \]

\[\text{Lifetime} \sim \frac{\text{M}}{\text{L}} \]

In solar units this is:

\[\frac{\text{M}}{\text{L}} \times 10^{10} \text{ years} \]

more massive stars are first to “die”
Stellar Clusters as Laboratories

• Stars are “born” from a collapsed molecular cloud of gas. Several stars are created at once, not one at a time.

• Stars still gravitationally bound to their “siblings” are part of a cluster

• Clusters are ideal to study:
 – Stars are the same age
 – Same initial chemical composition
 – same distance to Earth
Age of Clusters

• Bigger MS stars die* first. Knowing lifetimes of stars we can determine age of a cluster.

• Dead stars expand and redden in color (surface temperature cools)

*die means stars fuse most of their core hydrogen into helium. Star evolves to next stage
From luminosity we find mass and lifetime.
Lab 2: Measuring Flux

- “Count” the number of photons of star in a small aperture on image.
- Subtract the background sky
- = brightness or flux of star.
Flux is converted to **magnitudes**

- **Apparent magnitude:**
 \[m = -2.5 \log_{10}(F) + \text{const.} \]

- Can be written as \(m \), \(m_{\text{filter}} \) (e.g. \(m_B \)) or filter abbreviation (e.g. B, V or R)

- **Absolute magnitude:** Flux measured at 10pc away from object (\(F = \frac{L}{d^2} \))
 \[M = -2.5 \log_{10}(L) + 5 + \text{const.} \]

- Can be written as \(M_{\text{filter}} \) (e.g. \(M_B \)) or filter abbreviation (e.g. B, V or R)
<table>
<thead>
<tr>
<th>Object</th>
<th>Apparent Magnitude (V)</th>
<th>Absolute Magnitude (V)</th>
<th>B-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>-27</td>
<td>4.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Moon</td>
<td>-12.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Venus</td>
<td>-5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sirius</td>
<td>-1.47</td>
<td>1.42</td>
<td>0</td>
</tr>
<tr>
<td>VY Canis Majoris</td>
<td>8</td>
<td>-9.4</td>
<td>2.24</td>
</tr>
<tr>
<td>Rigel</td>
<td>0.12</td>
<td>-6.69</td>
<td>-0.13</td>
</tr>
<tr>
<td>Naked Eye limit</td>
<td>6.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Andromeda Galaxy</td>
<td>3.44</td>
<td>-21.5</td>
<td>0.91</td>
</tr>
<tr>
<td>Most distant galaxy found</td>
<td>29 (in red filter)</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
Lab 2: Signal to Noise

• Read discussion in lab, based on poisson statistics. Uncertainty $\sim N^{1/2}$ where N is the number of photons

• Conceptually, sky subtracted flux must be larger than the spread in noise of the background signal
Finding Distance

Sun: B-V=0.6
B-V is independent of distance. $M_V = +4.8$

Flux that we measure from Earth is apparent magnitude →

"Distance modulus" $m-M=-5\log(d) -5$
Finding Age

Compare the apparent magnitude of the most massive star to a sun-like star in the cluster:

Both stars are at the same distance, so you can directly compare their luminosities.