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Chapter Nine 
Correction Models For Quantitative Analysis 

9. Introduction 

Raymond Castaing not only designed and built the first electron probe microanalyzer 
for his Ph.D. Dissertation (1951) at the University of Paris, but also laid much of the 
groundwork for quantitative chemical microanalysis.  Although Castaing initially thought that 
the intensity of x-ray photons detected by the instrument should be simply and directly 
proportional to the concentration of the element in the sample producing the photons, he 
quickly discovered that the details of x-ray production, absorption and enhancement within the 
specimen are exceedingly complicated.  Indeed, after almost 45 years of research, there is no 
universally accepted approach to calculating the concentration of an element from the x-ray 
intensities obtained on an "unknown" relative to a "standard" of known composition.  In this 
chapter, we hope to introduce you to the most widely used correction procedures, and give you 
an appreciation for what is going on in the computer between the time the x-rays are collected 
and the “analysis” is printed. 

The simple idea that the intensity of x-ray photons detected with energy and 
wavelength characteristic of element "i" in a sample of unknown composition can be compared 
with the intensity of the same x-rays in a standard of known composition, and thereby be used 
to determine the concentration of the element in the unknown material, is often referred to as 
Castaing's First Approximation.  In its simplest form, the first approximation can be written 
as: 
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eq.  9-1 

where C refers to concentration as weight fraction (or percent), I represents the intensity 
of x-ray photons collected, and s and u  refer to standard and unknown respectively.  
Historically, the term on the right-hand-side of this equation (the ratio of x-ray intensities) 
defines what is known as the K-ratio or more precisely the “raw” k-ratio.  

Sometimes this “raw” k-ratio is defined slightly differently when the standard is not a 
pure element, so that, 
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eq.  9-2 

But this is not often seen today, and therefore we assume that the “raw” k-ratio is 
simply the unknown intensity divided by the standard intensity. Where both intensities have 
been corrected for all instrument effects such as background, dead-time, beam drift, 
interferences and normalized to count time (usually counts per second). 

9.1. The ZAF Correction Factor Approach 

We can begin our discussion by recognizing that the production of x-rays is indeed 
proportional to the number of analyte atoms per unit volume within the specimen.  If we let n 
be the number of characteristic analyte photons generated in the specimen per average 
primary electron, and x be a measure of the path length of the average electron traveling 
through the specimen, we can write the following proportionality: 
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eq.  9-3 

In this equation, C is the concentration of the analyte element, ρ is the density of the 
specimen, N is Avogadro's number and A is the atomic weight of the analyte element.  The term 
on the right-hand-side of this equation is the number of analyte atoms per unit volume.  It is 
important to realize that the concentration term in the first approximation, and in any "final" 
quantitative analysis, is based on the mass fraction concentration rather than on an atom 
fraction. In addition to equation (9-3), we learned earlier that the volume of specimen in which 
primary-beam electrons have energy in the range Ec to Eo, is inversely proportional to the 
density of the specimen. Recognizing the role of density in determining the interaction volume, 
and accepting the proportionality presented in (9-3) it follows that the number of ionizable 
atoms is directly proportional to the mass fraction of that atom in the specimen.  

Furthermore, it is also true that most of the matrix corrections (soon to be described) 
that are applied to intensities measured in a compound unknown (more than one element 
present) are properly formulated in terms of mass fractions. For example the average mass 
absorption coefficient is properly based on mass fraction summations of the pure element mass 
absorption coefficients because the mass absorption coefficients are mass normalized. The 
same can be said for average stopping power calculations, though this is not true for average 
backscatter loss factors which are not mass dependent, but rather atomic number dependent 
(Donovan, et. al., 2003). 
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The proportionality constant needed to turn equation (9-3) into an equation is a measure 
of the probability that once an electron encounters an analyte atom, the interaction will result in 
inner-shell ionization and the generation of a characteristic x-ray photon.  The probability of a 
K-shell ionization is called the K-shell ionization cross section.  It has the dimensions of area 
and is denoted by the symbol Q.  Recall that it is not sufficient just to produce an inner-shell 
ionization; the x-ray photon must escape from the atom, and its probability of doing so is called 
the fluorescent yield, ω.  The product Qω, therefore defines the probability that a primary-
beam electron will actually produce an x-ray photon.  Understanding these probabilities, we can 
now express (9-3) as an equation. 
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eq.  9-4 

The term d(ρx) refers to an infinitesimal of the density normalized path length. Q has 
been empirically determined and is only a function of E and is not affected by the matrix 
composition of the specimen. ω, the fluorescent yield is a property of the analyte element, and 
is also not affected by the composition of the specimen. 

With reference to Castaing's first approximation (9-1), we see our first evidence that if 
the standard and unknown have different compositions, the direct proportionality between x-ray 
intensity and composition might not hold true.  

Equation (9-4) can be more appropriately written in terms of the energy of a primary-
beam electron as it travels along a density-normalized path length. 
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eq.  9-5 

Written in this manner, the number of photons generated is related to the energy loss of 
the primary electrons (dE) rather than path length.  The expression in the denominator of the 
right-hand-side of equation (9-5) is called the stopping power of the specimen, and is denoted 
by the symbol S. 

S dE
d x  ( )  

eq.  9-6 

The stopping power is a measure of the rate of electron energy loss per unit of density 
normalized path length through the specimen.  The stopping power for the hydrogen atom was 
first determined theoretically by Bethe in 1930.  Since then, stopping power has been 
empirically determined by a number of experimental physicists.  For a single element target it is 
commonly expressed in terms of Z, A, Ec and Eo for that element.  The important concept to 
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realize is that if we are interested in collecting x-rays produced by a particular element in either 
a standard or an unknown, the "stopping power" of interest is that of the entire specimen.  In 
other words in order to calculate S we must first know the composition of specimen.  If the 
composition of the specimen is known, or has been calculated, the stopping power is given by: 

i j j j (i)S    =     C S   
eq.  9-7 

In this, and all equations to follow in this chapter, C refers to mass fraction, i 
refers to the analyte element, j refers to all other elements present in the specimen and j(i) 
means all elements including i.  The summation is taken over all elements in the specimen.  

The following eq. 9-8 is the commonly used equation for the total stopping power as 
derived by Berger and Seltzer (1964 -- what a combination of names!). 
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eq.  9-8 

The important point to note here is that because S is dependent on the composition of 
the material, including the analyte element, the generation of analyte x-rays depends not only 
on Ci, but also on the other elements (j) in the specimen.  Therefore, the simple first 
approximation (eq. 9-1) can strictly only hold if the unknown and standard have identical 
compositions.  Since this scenario is nearly always impossible, a correction must be made to 
account for the different stopping powers in the standard and unknown.  In other words, 
Castaing's first approximation must be modified to include the stopping power effects in both 
standard and unknown: 
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eq.  9-9 

In addition to differences in stopping power, a standard with a different mean atomic 
number (Z) may differ from an unknown in the production of backscattered electrons.  Earlier 
in this course we developed the theory of BSE generation and many of you have subsequently 
utilized the intensity of the BSE signal to image phases of different atomic number.  Although 
the generation of BSEs is clearly useful for imaging purposes, it is in fact detrimental to 
quantitative x-ray analysis because when high-energy electrons escape from the specimen, they 
no longer have the potential to generate characteristic x-rays.  The higher the mean atomic 
number of the specimen, the more BSEs are generated, and this means that fewer high-energy 
electrons are available to produce x-rays.  In terms of quantitative analysis, this means that if 
the standard and the unknown differ in mean atomic number (Z), the intensity of x-rays 
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generated will be affected by the backscattering process.  We define the backscattering 
coefficient R as: 

R      
I (actually generated in specimen)

I (would be generated if no backscattering occured)


 

eq.  9-10 

With this definition the backscatter coefficient, R denotes the fraction of the total "potential" 
intensity that is actually generated.  Turning the equation around,  (1-R) defines the fraction of 
the potential intensity that is lost due to backscattering. 

Notice that the intensity in the denominator of equation (9-10) is what we have been 
considering so far (i.e., eq. 9-9).  Recognizing that standard and unknown may have different 
backscattering coefficients, we must further modify equation (9-9) as follows): 
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eq.  9-11 

By placing the "R-ratio" on the left-hand-side of the equation, we can now treat the intensities 
as those actually generated within the specimen.  

The "stopping power" and "backscatter" corrections deal with the fundamental 
generation of primary characteristic x-ray photons by the analyte elements present in both the 
unknown specimen and the reference standard.  They are both function of the mean atomic 
number of the target.  They can be thought of as correction factors for the Z effect.  

Note that although it is traditional to calculate the average backscatter loss in a 
compound specimen based on the mass fractions of the elements present, because 
backscatter is actually a function of Z (and weakly of beam energy), a rigorous calculation of 
backscatter loss requires a calculation based on “Z” fraction, plus a correction for screening 
of the nuclear charge by inner orbital electrons in higher Z atoms. See Donovan, et. al., 
2003. This discrepancy is only significant in cases where the atomic number correction is 
very large, for example the analysis of Si in PbSiO3 or ThSiO4  using SiO2 as a primary 
standard. 

In chapter 3 we learned that x-rays, once generated within the specimen might be 
absorbed as they travel through the specimen.  Therefore, the x-ray intensity we actually 
measure may not be that actually produced by inner-shell ionization.  In addition to the atomic 
number effects, we also must correct for x-ray absorption.  This correction is known as the A 
factor. 
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X-rays produced by other elements within the specimen may have energies sufficiently 
high to cause secondary fluorescence of analyte atoms.  This effect will obviously serve to 
increase the intensity we measure above that predicted by the first approximation.  We must 
therefore also apply a correction for the fluorescence taking place within the specimen.  This 
correction factor is known as the F factor. 

The ZAF correction factor approach was designed to consider all of the above failings 
of the first approximation sequentially and to calculate correction factors for two specimens so 
that when the measured intensities are multiplied by these factors, the resulting "corrected 
intensities" are truly proportional to concentration. The correction factors for stopping power 
(S) and backscattering (R) are dependent mainly on the mean atomic number and are often 
lumped together into a "Z" factor.  The absorption and fluorescence factors are denoted by 
"A" and "F" respectively.  These conceptual corrections can be applied to the first 
approximation to yield the following: 
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eq.  9-12 

Over the years, numerous equations have been presented for each of the "factors" in the 
ZAF approach.  In all cases, these equations are simply fits to empirical data, and one always 
worries about extrapolating such equations outside the system for which they were determined. 
 One also has to worry about which of the numerous equations for each factor is truly the 
"best".  The following table summarizes the most widely used equations for the correction 
factors. 

 
 

Summary of Formulae for ZAF Correction Factors  
 
I. Stopping Power 
 
   Si  =  ∑j  Cj Sj (i) 

j (i)S   =   
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Berger and Seltzer (1964) 

  
 

II. Backscattering Factor 
 
Ri  =  ∑j  Cj Rj (i) - note approximation of average backscatter loss using mass fraction averaging 
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Rj (i)  =  R1  -R2 ln [ R3Zj  +  25]    Yakowitz (1975) 
 
R1  =  8.73x10-3 U3

o,i  -  0.1669 U2
o,i  + 0.9662 Uo,i  +  0.4523 

 
R2  =  2.703x10-3 U3

o,i  -  5.182x10-2 U2
o,i  + 0.302 Uo,i  -  0.1836 

 
R3  =    (0.887 U3

o,i  -  3.44 U2
o,i  + 9.33 Uo,i  -  6.43)/U3

o,i  
 
(R values are polynomial fits in terms of "overvoltage", Uo,i.) 
  
III. Absorption Factor 
 
f (χ)i  =   [ 1 + 3x10-6 (E1.65

o        -  E
1.65
c,i    )χ  +  4.5x10-13 (E1.65

o        -  E
1.65
c,i    )

2χ2 ] -1 
 
χ  =  (μ/ρ)i - specimen  · cosec Ψ   Heinrich, Yakowitz and Vieth (1972) 

modified Philibert expression 
 
(μ/ρ)i - specimen  =  ∑j  Cj(μ/ρ)i-j 
  
 
IV. Fluorescence Factor 
 
   Ωi  =  ∑j  Ωj - i 
 

j-i    =    0.5 jC  
( / j-i)

( / j-spec)
  

( ir  -  1)

ir
  j   iA

jA
  

( o, jU  -  1 1.67)

( o, iU  -  1 1.67)
  [ g(u) +  g(v) ] j-i 

 

 


 
 
(μ/ρ)j - specimen  =  ∑j  Cj (μ/ρ)j-j     Reed (1965) 
 
g(u)  =  ln( 1 + u )/u;  u  =  cosec Ψ [(μ/ρ)i - specimen / (μ/ρ)j - specimen] 
 
g(v)  =   ln( 1 + v )/v;  v  =  4.5x105 / [E1.65 

o       x   (μ/ρ)j - specimen] 
  
 
Uo,i  =  Eo/Ec,i for Eo/Ec,i ? 10;  if Eo/Ec,i > 10, set Uo,i  = 10;  all terms in keV. 
  
 

Note that each of the four correction factors is composition-dependent, and hence 
evaluation of a factor for a given specimen (standard or unknown) requires a summation of the 
factors for each element in the specimen multiplied by the weight fraction of that element.  For 
a standard this means that even if only a single element in that standard is used in an analysis, 
the full composition of the standard must be used to calculate the Z, A and F factors for the 
analyte element.  The consequences for unknowns are even more severe.  Note that in order to 
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calculate the correction factors for an unknown, a composition must be used.  This means that 
the procedure must be iterative.  In practice, software begins with a "first approximation" 
composition as calculated from equation (9-1).  This first approximation composition is then 
used to calculate the correction factors.  By repeating the entire process until a desired degree of 
convergence occurs, the final composition is refined.  In practice, two to four iterations 
generally are sufficient.  The closer the standard is the unknown, the fewer iterations needed, 
although modern computers are fast enough so that this is not generally a consideration.   

More important, is the accuracy of the correction factors.  Once again, they are all 
largely fits to experimental data, and may in fact not be generally valid for all compositional 
ranges or combinations of elements.  Recognizing not only that the correction factors are not 
perfect, but the magnitude of correcting the first approximation can be as large as 500%, it 
makes some sense to minimize the influence of the correction factors by making the ratios of 
correction factors in the unknown and the standard as close to unity as possible.  For example, 
the difference between two ZAF corrections as determined for apatite and silicate suggest we 
shouldn’t use fluorine in apatite as a standard for fluorine in mica (even assuming that the 
differences in peak shape and shift are not significant).  Once again, this is strong justification 
for selecting standards as close as possible to the unknowns. 

However, this needs to be balanced against the fact that it is almost impossible to 
“know” the actual composition (accuracy) of compound standards. Metallic elements and 
simple oxide are generally pure enough that a composition of 99.99% or so can be assigned 
with some confidence. But a standard such as a glass for complicated material not constrained 
by stoichiometric considerations, requires special treatment.  

So it boils down to what do you trust more: the compound standard composition (that 
may be close to your unknown composition) or the matrix correction procedures that you will 
have to rely on if extrapolating from a pure metal or oxide standard? 

  

The PAP Approach 

A major shortcoming of the ZAF 
approach is related to the absorption 
correction factor.  As noted above, 
several versions of this factor have been 
presented over the years (e.g., Duncomb 
and Shields, 1964; Heinrich, 1969).  The 
different versions are simply empirical 
fits to different sets of measured 
absorption data.  They are all based on 
an absorption equation developed by J. 
Philibert in 1963. 

The fundamental principles 
involved with any absorption equation  

Figure 9-1  Illustration of absorption of x-rays generated at 
some depth within the specimen 
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can be understood by assuming the production of x-rays from any finite depth within the 
interaction volume and then examining the absorption of those x-rays as they travel along a 
path to the surface defined by the take-off angle.  As the beam electrons are scattered within the 
specimen and have their energies reduced from Eo to Ec, they generate a certain number of x-
ray photons at each depth level in the specimen (i.e., at depth z below the surface there is a 
certain intensity of radiation, ∂I, that is produced).  Adsorption is proportional to the path length 
the x-rays must traverse to get out of the sample.  There are two important parameters 
illustrated in Figure 9-1: one is the absorption along the density-normalized path length (ρZ 
cosec ψ), and the other is the variation of ∂I with respect to depth within the specimen.  The 
function (ρZ) is used to describe the latter parameter.   

The function (ρZ) is defined as: 

 


 ( Z)      
d I

d ( Z )


 

eq.  9-13 

Nowadays, the function (ρZ) 
can be calculated by combining Monte 
Carlo simulations of electron paths 
(c.f., Chapter 2) with equations 
predicting the generation of x-rays (c.f., 
eq. 9-5).  The form of (ρZ) as a 
function of depth within a specimen is 
illustrated in Figure 9-2.  The initial 
increase in x-ray generation below the 
surface is due to electron scattering, 
which effectively increases the path 
length of electrons within layer d(ρZ).  
As density-normalized depth increases, 
the production of x-rays decreases.   

 

 

 
Figure 9-2  Schematic illustration of the function Φ(ρZ) vs. 
depth. 
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For any finite depth interval (ρZ + (ρZ)) 
 




  
   I    =     

( z)

[( z) + ( z)]

( z) +  d( z)
 

eq.  9-14 

The total intensity generated is given by the integral 
 

I (generated)    =     

0

 ( z) +  d( z)


   

 
eq.  9-15 

But the intensity generated at each depth is subject to absorption according to Beer's law 
such that, 

dI (emergent)

dI (generated)
    =      [-( / )(  z  )]   cosecexp   

eq.  9-16 

and 

dI (emergent)    =     ( z) [- ( / ) z  ] d ( z)     cosecexp 
 

eq.  9-17 

Finally, the ratio of emergent to generated intensities is given by 
 
 

I (emergent)

I (generated)
    =     0

 ( z) [- ( / ) rhoz  ] d ( z)

0

 ( z) d ( z)

   =    f( )




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    
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cosecexp 
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 eq.  9-18 
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The function f(χ), where 

χ = [(μ/ρ)·cosecΨ], is the parameter used 
in the ZAF "F" factor.  In order to 
evaluate f(χ), we need to know the depth 
distribution of x-ray generation.  Prior to 
1991, there was no satisfactory 
theoretical derivation for (ρz), and f(χ) 
needed to be experimentally determined. 
 The most commonly used experimental 
approach to measuring absorption is the 
so-called "tracer method" in which a thin 
layer composed of the element of interest 
is sandwiched between offset layers of 
the absorbing material.   

This cleverly designed 
experimental technique allows for 
relatively precise determination of, for 
example, the absorption of V Kα x-rays 
by titanium.  Drawbacks to this technique 
are, however, significant.  First of all, it only indirectly measures (ρz) at point 2 thru 4.  More 
importantly, it only provides absorption data for two elements at a time.  For a complete 
description of absorption of V Kα x-rays, the experiment would have to be repeated for all 
elements capable of absorbing vanadium x-rays.  The matrix of all possible combinations of 
elements poses a formidable experimental task.  For this reason, only a fraction of the many 
combinations of elements have actually been measured with this technique.  The approach has 
been to measure a relatively few number of element pairs (usually relatively heavy metals) and 
then extrapolate the data to different compositions. 

 

 
Figure 9-3  Schematic diagram illustrating the “tracer” 
method for measuring absorption.  The circles are a schematic 
representation of the interaction volume.  Grayed regions 
represent the area of generation of vanadium x-rays. 
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In 1991, Jean-Louis Pouchou and 

Françoise Pichoir (hereafter known as PAP) 
pointed out the failings of the traditional ZAF 
approach based on the Philibert model.  They 
noted that especially for low-Z elements, the 
Philibert model failed to predict recent tracer 
data and greatly underestimated the (ρz) 
distribution.  An example provided by PAP is 
shown in Figure 9-4 which shows the depth 
distribution of Mg Kα x-ray generation in 
aluminum (i.e., absorption of Mg by Al).  The 
Philibert model clearly does not reproduce the 
measurements.  In contrast, the new model 
presented by PAP provides an excellent fit.  

The simplified Philibert model corresponds to a very crude representation of the depth 
distribution of x-ray generation (ρz) by means of a linear combination of two exponentials, 
i.e., 

f( )   =    [ 1 +  a  +  a ]1 2
2 2 -1     

eq.  9-19 

where a1 and a2 are constants and γ = (E0
1.65 – Ec,i

1.65) (see the equations above for the ZAF 
"A" factor).  The primary goal of the PAP model is to provide a more accurate calculation 
of x-ray generation within the specimen.  The authors accomplish this by developing a 
better representation for the total intensity generated within the interaction volume: 

F    =     

0

 ( z) +  d( z)


   

 
eq.  9-20 

The PAP calculation is performed in two steps: 
 

1. Calculation of the area of the distribution, equivalent in principle to that of an 
atomic number correction. 

 
2. Direct calculation of the generated intensity, based on the distribution (ρz) 

defined by its area and by the parameters of form adopted for the mathematical 
representation. 

 

 
Figure 9-4  Calculated and measured x-ray emission 
intensities for magnesium in aluminum (Pochou, Pichoir, 
1991) 
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With the PAP approach, the distinction between separate Z and A factors is lost.  In the 
most simple terms, (ρz) is mathematically expressed by means of two parabolic branches, 
equal in value and slope at a certain depth level.  The equations defining the parabolic 
branches are complicated and need not be reproduced here.  The bottom line is that the 
PAP model appears to be clearly superior in reproducing experimental tracer data, 
especially for relatively low-Z elements.  For example, an uncertainty analysis based on 
the difference between calculated and measured tracer data results in a standard deviation 
of approximately 4% for the traditional ZAF approach and 1-2% for the PAP approach. 
 

Once the (ρz) distribution has been calculated, the PAP method incorporates the 
traditional fluorescence factor based on the equations and data provided by Reed (1965).  
These are the same equations as listed above for the Florescence Factor. 
 

Like the ZAF approach, the PAP correction is an iterative model.  It relies on the 
first approximation concentrations for the initial input.  Depending on the similarity of 
the standard and unknown, two to four iterations are usually required to achieve acceptable 
convergence. 
 

We can summarize the theoretical approach with the following equation: 
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eq.  9-21 

In the traditional ZAF correction procedure, the R and S factors (backscatter and stopping 
power, respectively) are grouped together as the "Z factor", i.e., 
 

C   =   K · Z · A · F 
 
where K refers to the "K-ratio", Z the atomic number factor, A the absorption factor and F 
the fluorescence factor.  In the PAP approach, R, S and f(χ) are treated together and 
calculated as (ρz), i.e.,  
 

C  =  K · (ρz) · F 
 

 
The PAP software is now distributed with all Cameca microprobes, and to our 

knowledge all Cameca users have chosen to base their analyses on this model.  Cameca's 
only current competition (for microprobes) is JEOL, which does not provide the PAP 
software.  Users of the new JEOL "SuperProbe" either use a traditional ZAF package or a 
modified ZAF that incorporates a (ρz)-type of calculation. 
 

On-line computers were first integrated with electron microprobes in 1975.  Prior 
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to that time, all correction procedures (i.e., ZAF corrections) had to be run on a main-
frame computer after the analyses were completed.  Between 1975 and 1988, microprobes 
were equipped with an on-line minicomputer, but that generation of computers lacked the 
memory and speed required to perform a ZAF correction.  During that period of time, and 
continuing today in many labs, the correction of x-ray data was accomplished with a very 
simple empirical model known as the Bence-Albee approach.  Since many important 
geological papers include microprobe analyses made with the Bence-Albee technique, and 
some of you may end up in labs in which it is still used, we believe it useful to describe the 
technique and its limitations. 
 
 

9.2. The Bence-Albee Technique 

Equation (9-21) can be simply expressed as 
 
 C = K · α 
 

where C is the concentration of the unknown, K is the K-ratio, and α is a correction 
factor.  If standard and unknown were exactly of the same composition, α would equal unity.  
If, relative to the standard, fluorescence in the unknown dominates, α would be less than unity, 
and if absorption in the unknown dominates, α would be greater than unity. 

The actual meaning of alpha can 
be understood by considering a binary 
metal alloy composed of elements A and 
B.  Figure 9-5 illustrates the relationship 
of K to C for different values of α.  Alpha 
= 1 corresponds to a linear (1:1) variation 
of K with concentration.  If fluorescence 
of element A dominates, the K-ratio will 
be greater than that predicted by the 
concentration of A.  On the other hand, if 
absorption of A plays the dominant role, 
the K-ratio will be less than that 
predicted by the concentration of A in the 
binary alloy. 

The analytical form of an 
equation describing curves such as 
shown in Figure 9-5 is as follows: 

 
Figure 9-5  Absorption and enhancement in a binary alloy AB 



C H A P T E R  N I N E  
C O R R E C T I O N  M O D E L S  F O R  Q U A N T I T A T I V E  A N A L Y S I S  

 

9–15 

(1 -  K
A

AB
 )

K
A

AB

    =     
A

AB
 . 

(1 -  C
A

AB
 )

C
A

AB



 
eq.  9-22 

The term "KA
AB" is read as "the K-ratio for element A in alloy AB".  Notice that the 

term αA
AB is a constant.1  The problem with this assumption was later realized by others to be 

inadequate over a range of binary element concentrations. Rivers (unpublished, 1979) wrote a 
software (PRMAIN) incorporating a two coefficient (linear fit to alpha-factors as a function of 
binary composition) Bence-Albee correction at UC Berkeley and later, Armstrong published a 
even more rigorous three coefficient (polynomial fit) to the correction factors (Armstrong, 
1988). 

 
If alpha is indeed a constant 

over all values of CA, then a plot of 
CA/KA vs CA should be linear.  The 
correction required for element A in the 
binary system AB changes from 1 in 
pure A (CA = 1) to a maximum 
difference from 1 when CA = 0.  The 
factor αA

AB is defined as CA/KA in the 
limit where CA→ 0. αA

AB is a measure 
of the affect of element B in the 
mixture of A and B on the x-ray 
intensity of A.  Such plots can be 
measured experimentally by collecting 
x-ray intensities from binary alloys and 
fitting the data to equations of the form 
9-22.  Alternatively, they could be 
calculated by running a ZAF program 
backwards, i.e., knowing the actual 
composition, calculate what the 
observed x-ray intensities would be in a 
binary alloy. 

Ziebold and Ogilvie (1964) demonstrated that such empirical correction factors (alphas) 
determined for x-rays generated in binary metal alloys could indeed be described by such linear 
expressions.  The linear relationship shown in Figure 9-5 is equivalent to: 

                                                 

1  For those of you well versed in petrology, Figure 9-5 and equation 9-22 are identical to those used to 
define the partitioning of an element between two minerals.  A plot of the mole fraction of an element in 
one mineral along the ordinate and the mole fraction of the same element in another mineral along the 
abscissa will produce a smooth curve defining a constant KD. 

 
Figure 9-6  Plot of various constant alpha factors versus 
concentration 
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C

K
    =      +  (1 -   )CAB

A

AB
A AB

A
AB
A

AB
A   

eq.  9-23 

By empirically determining alpha factors in a number of binary metal alloys, Ziebold 
and Ogilvie were able to make corrections for a number of metal alloy systems.  They also 
extended the approach to multicomponent systems by arguing that the alpha factor for a ternary 
system, ABC, can be defined as the weighted average of two of the three binary alpha factors.  
In other words, for the ternary system ABC, 

) C + C (

) C   +  C  (
   =  

C
ABC

B
ABC

C
ABC

A
AC

B
ABC

A
ABA

ABC




 

eq.  9-24 

Bence and Albee (1968)  extended the empirical correction factor approach by using 
binary oxides (e.g., SiO2, MgO, Al2O3, etc.) instead of pure metals.  They, along with Albee 
and Ray (1970) published "measured" alpha factors for 36 elements. The alpha factors were 
listed in matrix form and could easily be put into a data table in a simple computer algorithm.  It 
turns out that the "empirical" alpha factors were actually measured for only a few oxide pairs.  
The rest were calculated using a ZAF routine.  In essence, they simply combined the Z, A and F 
factors calculated for binary oxides into a single "alpha factor".  In this regard, a shortcoming of 
the Bence-Albee approach is that the "empirical correction factors" are not independent of the 
many assumptions, approximations and failings of the ZAF method. 

For multiple element minerals, the Bence-Albee method calculated what they called the 
"beta factor", which is simply the concentration-weighted average of the binary oxide alpha 
factors, i.e.,  

A,B,C...N
A A,B,C...N

A
AA

A
A,B,C...N

B
AB

A
A,B,C...N

C
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A
A,B,C...N
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AN

A

A,B,C...N
A

A,B,C...N
B

A,B,C...N
N

 =   
C  + C  + C +  . . . C

C  + C  +  . . . C
    

 

eq.  9-25 

In this form, the correction factor α is the actual factor used to convert measured 
intensity ratios to actual concentrations.  The concentration of oxide "A" in an unknown is then 
calculated from the following equation: 
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eq.  9-26 

The big advantage to the Bence-Albee approach was that the numerical calculations are 
simple enough to perform on a calculator or crude computer such as existed on most 
microprobes until a few years ago.   

An unfortunate aspect of the original Bence-Albee paper was that they actually 
suggested that since the alpha factors were based on binary oxide pairs, oxides could be 
effectively used as standards.  This was very appealing because it implied that the only 
standards a lab needed were pure, homogeneous oxides.  For example, Bence and Albee 
implied (and many individuals believed) that analysis of minor amounts of Ti in pyroxene 
could accurately be done using pure TiO2 as the standard.  In actual fact, such blind faith in the 
accuracy of the correction procedure, produced many poor analyses.  It is especially suspect for 
low-Z elements such as fluorine, sodium and magnesium.  If you are ever in a situation where 
you have to use the Bence-Albee method, it is absolutely critical to have standards that are very 
close to the unknowns you are analyzing. 

Back in the "dark ages", one had to know a great deal about the various correction 
procedures.  In some cases, they actually had to be done by hand calculation!  Nowadays, with 
high-speed, on-line computers and extremely sophisticated software, the complicated task of 
transforming raw x-ray intensities into meaningful analyses is almost transparent to the 
operator.  For example, a complete, 13-element analysis may only require only a few seconds to 
perform a complete correction. And the accuracy over a wide range of compositions is 
generally recognized as very good- though there are certain situations that you can still get into 
trouble.  

Although our confidence in state-of-the-art correction procedures justifiably is high, 
such confidence should not breed complacency on the part of the analyst.  At the risk of 
sounding like a broken record, we remind you that even the most sophisticated correction 
procedure does not guarantee complete accuracy, and the shortcomings of all corrections, can 
be minimized by intelligent selection of standards and strict attention to other compositionally 
dependent corrections such spectral interferences, element volatility and peak shape-shift 
changes. 

Let us conclude these lecture notes, by urging you to use them frequently in your future 
work with electron-beam instruments.  In these notes, we have striven to give you the 
information required to understand and make the most out of two extremely valuable tools, 
namely the EMPA and the SEM.  We emphasize that these sophisticated and very expensive 
instruments are only tools for doing scientific research.  The scientific importance of the data 
collected by these instruments is primarily governed by the nature of the scientific problem 
being addressed.  Modern electron-beam instruments have enormous capabilities.  Our 
instruments are clearly "state-of-the-art", however, they rely ultimately on the operator who 
controls the quality of the data they produce.  They also rely on all operators to take good care 
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of them -- not only to prolong their useful life, but to also insure that they retain their 
reproducibility and accuracy.   

Furthermore, the ultimate quality of any data produced by these instruments requires 
good judgment and practice by the operator.  All aspects -- from sample preparation, coating, 
instrument-parameter-selection, tuning of x-ray spectrometers, standard selection, focusing and 
a host of other operator-controlled features ultimately control the quality and the relevance of 
the data collected.  We have provided you with essentials, but it is up to you to utilize this 
knowledge so as to maximize the quality of your data. 

 
 


