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Abstract
We describe a semi-analytical method for the fast calculation of secondary fluorescence in
electron probe microanalysis of material couples. The calculation includes contributions from
primary K-, L- and M-shell characteristic x-rays and bremsstrahlung photons. The required
physical interaction parameters (subshell partial cross sections, attenuation coefficients, etc)
are extracted from the database of the Monte Carlo simulation code system PENELOPE. The
calculation makes use of the intensities of primary photons released in interactions of beam
electrons and secondary electrons. Since these intensities are not readily available and do not
allow analytical calculation, they are generated from short Monte Carlo simulation runs. The
reliability of the proposed calculation method has been assessed by comparing calculated,
distance-dependent k-ratios with experimental data available in the literature and with results
from simulations with PENELOPE. Numerical results are found to be in close agreement with
both simulated and experimental data.

(Some figures may appear in colour only in the online journal)

1. Introduction

Electron probe microanalysis (EPMA) is a widely used
technique for material analysis. Quantitative analysis is
obtained by measuring the energy spectra of x-rays emitted
from the specimen under irradiation with a focused electron
beam. Typically, the energy of the electron beam ranges
from a few keV up to about 50 keV. This paper describes
simple models for the fast calculation of approximate
secondary fluorescence corrections in EPMA, which are
required for converting measured x-ray intensities into element
concentrations. Although the effective electron range is
relatively small (of the order of a few µm), characteristic
primary x-rays penetrate much deeper into the specimen and
can ionize atoms at much larger distances, thus degrading the
spatial resolution of the technique as well as the accuracy
of evaluated chemical compositions (Reed and Long 1963).
Analytical formulae to account for secondary fluorescence
corrections in simple geometries have been proposed for

homogeneous specimens (Reed 1965), for material couples
(Hénoc et al 1969, Maurice et al 1965, Bastin et al 1983),
for thin films on substrates (Cox et al 1979) and for
multilayers (Youhua et al 1988). Usually, these formulae
only account for fluorescence from characteristic x-rays, the
contribution from the bremsstrahlung continuum has only
been considered for homogeneous samples. In this work we
describe a semi-analytical method for the fast calculation of
secondary fluorescence for homogeneous samples and material
couples, including characteristic and continuum fluorescence.
Preliminary results have been presented elsewhere (Escuder
et al 2010).

In the theoretical analysis and calculations that follow,
we use the physical interaction models implemented in
the general-purpose Monte Carlo code system PENELOPE

(Salvat et al 2009). This code provides a realistic
description of the elementary interactions of electrons and
photons, which combines elaborate analytical models with
extensive numerical databases. The subshell partial cross
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sections, attenuation coefficients, etc employed in the
present calculations are extracted from the PENELOPE database.
Quantities that do not allow an analytical calculation are
obtained from short runs of the Monte Carlo simulation code,
using a dedicated main program that automatically generates
all the required quantities and parameters. Simulations of
EPMA experiments are performed using the main program
PENEPMA (Llovet et al 2005, Salvat et al 2009), which has
been employed previously to describe fluorescence corrections
(Llovet and Galan 2003, Fournelle et al 2005).

We assume the usual geometrical arrangement of EPMA
measurements, i.e. a parallel beam of electrons with kinetic
energy E0 impinging normally on the flat surface of a
specimen. As a result of the interactions of the beam (primary)
electrons and of the secondary radiation generated within the
specimen, characteristic and bremsstrahlung photons emerge
from the specimen surface. These photons are recorded by a
detector that subtends a small solid angle in a direction that
makes an angle θd with the outgoing normal to the surface of
the specimen. The information required for the quantitative
analysis of the active volume of the specimen is provided by
the intensities of characteristic lines in the recorded spectrum.

2. Photon emission from a homogeneous specimen

Let us start by considering the case of EPMA measurements on
homogeneous specimens. In the course of their walk within the
specimen, primary electrons (i.e. those of the incident beam)
may undergo hard inelastic interactions in which fast secondary
electrons are released. These secondary electrons can also
cause the emission of photons by impact ionization of inner
atomic electron shells and by bremsstrahlung emission. In
the former case, the residual ion with a vacancy in the active
inner shell relaxes to the atomic ground state through a cascade
of radiative and nonradiative transitions and emits x-rays
and Auger electrons with discrete characteristic energies.
Bremsstrahlung photons have a continuous energy distribution,
which extends up to the energy E0 of the electron beam.
Photons emitted by primary electrons and by fast secondary
electrons will be qualified as primary photons.

While characteristic x-rays (and Auger electrons) are
emitted isotropically, bremsstrahlung quanta have initial
directions that are correlated with the direction of the radiating
electron. Nevertheless, as the direction of motion of electrons
in a solid becomes rapidly randomized by elastic (and inelastic)
collisions, primary bremsstrahlung photons have a broad
angular distribution. For the sake of simplicity, we will assume
that all primary photons are emitted isotropically.

Primary photons can, in turn, interact with the specimen,
primarily through the photoelectric effect and Compton
scattering. Hence, photons emitted originally in the
direction of the detector may be absorbed within the
specimen (absorption effect). Furthermore, interactions of
primary photons may cause the ionization of inner shells
of atoms, which relax to their ground state by emitting
secondary characteristic x-rays (fluorescence) and Auger
electrons. Fluorescence caused by characteristic x-rays and
bremsstrahlung photons will be referred to as characteristic

fluorescence and bremsstrahlung fluorescence, respectively.
In turn, secondary radiations may interact and produce third-
generation radiations, and so on. In practice, the contribution
to the measured spectrum of photons from the third and higher
generations is very small and can be neglected.

A material M described by means of its chemical formula,
(Z1)n1 (Z2)n2 . . ., is considered, where Z1, Z2, . . . are the
atomic numbers of the elements present, and n1, n2, . . . are
the corresponding stoichiometric indices. In the case of
compounds, na is the number of atoms of element Za in a
molecule; the molar mass (g mol−1) is Amol = n1Aw(Z1) +
n2Aw(Z2) + · · ·, where Aw(Za) is the atomic weight of the
element Za . For mixtures and alloys, the numerical values of
the stoichiometric indices are proportional to the percentage
number of atoms, pa , of each element. That is, na = C pa ,
where C is a positive number; the value of C defines the size
of a ‘molecule’. Of course, a ‘molecule’ will usually contain
fractions of atoms, but this is not a source of conflict provided
we define the molecular cross section as the properly weighted
sum of atomic cross sections. The number of molecules per
unit volume is

N = NAρ

Amol
, (1)

where NA is Avogadro’s number and ρ is the mass density of
the material (in g cm−3). The number of atoms of the element
Za per unit volume is

Na = naN = ca

NAρ

Aw(Za)
(2)

where

ca = naAw(Za)

Amol
(3)

is the mass fraction of the element Za .

2.1. Intensities of primary photons

The first ingredient for the calculation of fluorescence
corrections is the intensity of the primary photons, that is,
the number of primary photons that are emitted per unit solid
angle. Evidently, this intensity depends on the energy E0 of the
electron beam (and on the direction of incidence). In general,
accurate intensities of primary photons can only be calculated
from Monte Carlo simulations.

A rough approximation for the intensity of primary
photons may be obtained by neglecting backscattering effects
(electrons that are backscattered from the specimen do not
generate photons) and using the continuous slowing down
approximation (CSDA) to describe the stopping of electrons
in matter. The CSDA assumes that electrons of energy E lose
energy continuously; the energy loss per unit path length is
given by the stopping power S(E) = −dE/ds. Thus, the
intensity I1(E1) of primary characteristic x-rays of energy E1

released by atoms of the element Za in the filling of a subshell
i by electrons from an outer subshell can be obtained as

IM(E0, E1) = Pi,1

4π
Na

∫ E0

Eion
i

σi(E)
dE

S(E)
, (4)
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where σi(E) is the cross section for the production of a vacancy
in the ith subshell of the target atom by impact electrons with
kinetic energy E, Eion

i is the ionization energy of that subshell,
and Pi,1 is the probability that the vacancy in subshell i is filled
through the radiative transition that releases the characteristic
photon of energy E1. Note that the vacancy in the active shell
can be the result of either the direct impact ionization of that
shell or of the relaxation of vacancies generated by impact
ionization of deeper shells (with ionization energies larger than
Eion

i ). The product Naσi is the electron’s inverse mean free
path for the production of a vacancy in the active subshell
(i.e. the mean number of i-shell vacancies generated per unit
path length). Similarly, the intensity of bremsstrahlung quanta
(number of photons emitted per unit photon energy and unit
solid angle, assuming isotropic emission) can be evaluated as

dIbr,M(E0, E1)

dE1
= 1

4π
N

∫ E0

E1

dσbr(E)

dE1

dE

S(E)
, (5)

where dσbr(E0)/dE1 is the molecular differential cross
section for emission of bremsstrahlung photons of energy
E1 by electrons of energy E0 in material M. Hereafter,
quantities pertaining to primary photons will be denoted by
the subscript 1.

Although expressions (4) and (5) can be calculated fairly
easily, it is more expedient to obtain the intensities from Monte
Carlo simulations. As indicated above, we use the Monte Carlo
code system PENELOPE (Salvat et al 2011) which implements
the most accurate interaction models available, limited only
by the required general features of the code, a tunable
simulation scheme for tracking electrons (and positrons),
and an efficient geometry package. Electron histories are
generated using a mixed simulation algorithm: electron hard
interactions (involving energy transfers or angular deflections
larger than certain cut-off values) are simulated individually
from the corresponding differential cross sections, while
the effect of soft interactions (involving energy transfers
and angular deflections smaller than the corresponding cut-
offs) is described using multiple scattering approximations.
Photon histories are generated using the conventional detailed
scheme, in which interactions are simulated individually in
chronological order. X-ray spectra from targets irradiated
by electron beams are generated using the dedicated main
program PENEPMA (Pinard et al 2012). To improve the
efficiency of the simulation, PENEPMA makes use of the
variance-reduction technique of interaction forcing for inner-
shell ionization and bremsstrahlung emission events. In
particular, this technique consists of artificially increasing the
probability of occurrence of the processes of interest (i.e. those
ending with the emission of photons) and assigning appropriate
statistical weights to the generated photons in order to keep the
simulation results unbiased.

Using the program PENEPMA, we can evaluate intensities of
primary photons from homogeneous specimens as functions of
the energy E0 of the incident electron beam. The simulation for
each beam energy takes minutes on a single processor, so that
primary intensities can be routinely calculated for each desired
material. We have found that these intensities are closely
reproduced by simple analytical expressions, with parameters

determined by least-squares fittings to Monte Carlo data. Thus,
the intensity of primary characteristic x-rays can be expressed
as a polynomial in E−Eion

i , where Eion
i is the ionization energy

of the active atomic subshell,

IM(E0, E1) = a1(E0−Eion
i )+a2(E0−Eion

i )2 +a3(E0−Eion
i )3.

(6)
Here we keep the argument E1 to indicate that the intensity,
and hence the parameters ai , depends on the considered x-ray
line. On the other hand the intensity of bremsstrahlung quanta
can be expressed as

dIbr,M(E0, E1)

dE1
= Zav

(E0 − E1)

E1

×
[
(b0 + d0E0) + (b1 + d1E0)

(
E1

E0

)
+ (b2 + d2E0)

(
E1

E0

)2
]

,

(7)

where Zav is the average atomic number of the material.
It is worth mentioning that this expression is a natural
generalization of the approximate formula given by Kramers
(1923) for the energy distribution of bremsstrahlung photons
emitted by electrons of energy E0,

dI
(Kramers)
br,M (E0, E1)

dE1
= b0Zav

(E0 − E1)

E1
. (8)

Examples of comparisons of Monte Carlo simulation results
with the fitted analytical formulae are displayed in figures 1
and 2, which show that differences between the formulae
and the simulation results are usually less than the statistical
uncertainties of the latter.

It is worth noting that formulae (6) and (7) do account
for electron backscattering effects and for the contribution of
photons emitted in interactions of fast secondary electrons,
which are neglected in the conventional CSDA approach, (4)
and (5).

2.2. Absorption of primary x-rays

Not all primary photons that are emitted in the direction of the
detector reach the surface of the specimen and the detector. To
account for the absorption of primary x-rays on their way to the
surface, we need to specify the distribution of emission sites
with respect to the depth, z, in the specimen. Note that we set
the z-axis parallel to the incoming surface normal (see figure 3)
so that points within the specimen have positive z-coordinates.

The depth distribution of x-ray emission sites is given
by the �(ρz) function (Reed 1993), which is proportional to
the average number of ionizations produced by primary and
fast secondary electrons per unit depth. This function, which
is characteristic of each atomic subshell, has been measured
experimentally for a limited number of cases (Karduck and
Rehback 1991). The most reliable method for computing the
�(ρz) function is Monte Carlo simulation. It is worth recalling
that ionizations produced by primary electrons are located at
depths of less than the effective electron range, Reff(E0, E

ion
i ),

defined as the average path length that electrons with initial
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Figure 1. Intensities of the indicated primary x-ray lines of Cu, for an electron beam of energy E0 impinging normally on a thick sample of
Cu. Crosses are results from simulations with PENEPMA; lines represent the analytical approximation (6) with parameters obtained from
least-squares fits to the Monte Carlo data.
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Figure 2. Bremsstrahlung spectra for electron beams of energy E0

ranging from 5 to 50 keV impinging normally on a thick sample of
Co. Crosses are results from simulations with PENEPMA; lines
represent the analytical approximation (7) with parameters obtained
from least-squares fits to the Monte Carlo data.

energy E0 travel before acquiring a kinetic energy equal to
the ionization energy Eion

i of the active subshell. Within the
CSDA, the effective electron range is given by

Reff(E0, E
ion
i ) =

∫ E0

Eion
i

dE

S(E)
. (9)

On the other hand, primary bremsstrahlung quanta of energy
E are emitted from depths less than about Reff(E0, E).

Because we need to give only an approximate account
of absorption effects, and because the spatial distribution of
x-ray emission sites has only a moderate effect on fluorescence
corrections, we shall represent the �(ρz) function by means
of the simple empirical formula proposed by Heinrich (1985),

Figure 3. Geometry and reference frame adopted for the calculation
of photon intensities from a homogeneous specimen of material M.
Primary x-rays of energy E1 originate from points O near the
surface of the specimen, up to depths of the order of the effective
range of primary electrons; fluorescent x-rays of energy E2 may be
emitted from much larger depths.

which can be cast in the form

�(ρz) = ρ

aγ

[
α + (1 − α)

ρz

aγ

]
exp

(
− ρz

aγ

)
, (10)

where ρ is the mass density of the material, in g cm−3, a =
1.65 × 10−16,

γ = (E0/keV)1.65 − (Eion
i /keV)1.65, (11)

α = 0.18 − 2

γ
+ 0.008(Eion

i /keV) + 0.005
√

Zav, (12)
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and Zav is the average atomic number of the material. Note
that the function (10) is normalized to unity,∫ 0

−∞
�(ρ|z|) dz = 1, (13)

that is, it can be regarded as the probability density function of
the emission depth z of x-rays produced by primary and fast
secondary electrons. The calculations that follow can readily
be generalized to other, more realistic models of the �(ρz)

function.
The attenuation coefficient of photons of energy E in the

material M is

µM(E) = N
∑

a

na

[
σph(Za, E) + σCo(Za, E)

]
, (14)

where σph(Za, E) and σCo(Za, E) are, respectively, the cross
sections for photoelectric absorption and Compton scattering
by atoms of the element Za , and the summation runs over the
elements in the material. Each of these cross sections is the
sum of contributions from the various electron subshells, i, of
the target atom,

σph(Za, E) =
∑

i

σph,i (Za, E),

σCo(Za, E) =
∑

i

σCo,i (Za, E),

(15)

where σph,i (Za, E) and σCo,i (Za, E) are the partial cross
sections of the ith subshell. Note that µM(E) is the interaction
probability of a photon per unit length. Photons are absorbed
as they penetrate the material; the probability that a photon
reaches a distance s without interacting is given by the familiar
exponential attenuation law, exp(−µMs).

The intensity of primary photons of energy E1 that reach
the detector can now be evaluated as

I det
M (E1) = IM(E0, E1)

×
∫ ∞

0
�(ρz) exp

[
−µM(E1)

z

cos θd

]
dz. (16)

The factor in braces describes the effect of absorption. Note
that θd is the angle between the direction of the detector and the
outgoing normal (i.e. the polar angle of the detector direction
is π − θd) and s = z/ cos θd is the path length of a photon
within the specimen. In the case of Heinrich’s �(ρz) model
(10) the integral can be evaluated analytically, and the result is

I det
M (E1) = IM(E0, E1)

(
α(ρ/aγ )

µM(E1) sec θd + ρ/aγ

+
(1 − α)(ρ/aγ )2[

µM(E1) sec θd + ρ/aγ
]2

)
. (17)

2.3. Generation of fluorescent x-rays

Fluorescent quanta (secondary x-rays) are mostly produced
by photoelectric absorption of primary photons, although
Compton scattering can also give small contributions. Here,
for the sake of simplicity, we will only consider x-rays emitted

in the first interaction of primary photons and, accordingly,
primary photons are assumed to be effectively absorbed at their
first interaction. In reality, Rayleigh and Compton scattering
give scattered photons in directions different from those of
the primary photons, but the contribution of these scattered
photons to the fluorescent signal is small. Secondary x-rays
may either leave the specimen or be absorbed. As indicated in
the introduction, we have ignored fluorescent quanta emitted
through absorption of secondary x-rays.

Let us consider that primary photons of energy E1

penetrate the material M and generate characteristic x-rays of
energy E2, from transitions that fill a vacancy in the shell j of
element Zb. The number of vacancies in this shell produced
per unit path length of a primary photon is

VM(Zb, j, E1) = µM(E1)

×nb

∑
i

[
σph,i (Zb, E1) + σCo,i (Zb, E1)

]
Ci,j∑

b nb

[
σph(Zb, E1) + σCo(Zb, E1)

] , (18)

where the last factor is the probability that the interaction with
the primary photon induces a vacancy in subshell j of an atom
of the element Zb, either directly or during relaxation of an
initial vacancy in a deeper subshell. The constants Ci,j are
the probabilities for an initial vacancy in shell i to produce
a vacancy in shell j at any stage of the relaxation cascade
(Perkins et al 1991, Llovet et al 2012).

Thus, the intensity of fluorescent x-rays E2 emitted per
unit path length of the primary photon is

FM(E1, E2) = Pj,2

4π
VM(Zb, j, E1), (19)

where Pj,2 is the probability that the vacancy in the j th shell
migrates to an outer subshell by emission of a photon of energy
E2. Hereafter, quantities pertaining to fluorescent photons will
be labelled with the index 2.

All the physical parameters involved in the definitions
(14), (18) and (19) can be extracted from the PENELOPE

database. The basic approximation in PENELOPE and in the
present calculations is that interaction cross sections for atoms
bound in molecules and solids can be approximated by those
of free atoms (Bragg’s additivity approximation). However,
modelling of inelastic collisions of electrons does account for
binding effects through the use of empirical values of the mean
excitation energy, which determines the stopping power of
electrons with energies higher than about 0.2 Zav keV. Once
the attenuation coefficient µM(E1) and the fluorescence rate
FM(E1, E2) are known, with the aid of the simplifications
indicated above, fluorescence corrections for specimens with
simple geometries can be readily computed numerically.
Consideration of the higher penetration power of photons
allows the introduction of a further approximation that permits
the analytical evaluation of these corrections for homogeneous
specimens and couples.

3. Fluorescence from a homogeneous specimen

We can now formulate the calculation of secondary
fluorescence in homogeneous specimens, figure 3. This
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simple geometry is convenient to clarify the approximations
employed. Furthermore, calculations for homogeneous
samples are needed to obtain the characteristic line intensities
in EPMA spectra from standard materials, which determine
the so-called k-ratios (defined by (39)).

We wish to calculate the intensity of fluorescent x-rays of
energy E2 that reach the detector, i.e. the number of photons per
unit solid angle that emerge from the surface in the direction
of the detector. We first evaluate the intensity of fluorescent
x-rays of energy E2 released by primary photons of energy E1,
which is given by

J H(E1, E2) = 2π IM(E0, E1) FM(E1, E2)

∫ ∞

0
dz0 �(ρz0)

×
{∫ ∞

z0

dz exp

(
−µM(E2)

z

cos θd

)

×
∫ 1

0

d(cos θ)

cos θ
exp

(
−µM(E1)

z − z0

cos θ

)

+
∫ z0

0
dz exp

(
−µM(E2)

z

cos θd

)

×
∫ 1

0

d(cos θ ′)
cos θ ′ exp

(
−µM(E1)

z0 − z

cos θ ′

)}
, (20)

where the first exponential in the integrals accounts for the
absorption of fluorescent photons along their path to the
detector, while the second describes the absorption of primary
photons within the specimen. The angle θ ′ in the second term
is the complement to π of the polar angle θ ′ = π − θ . The
integrals are of the type∫ 1

0

dx

x
exp

(
−a

x

)
=

∫ ∞

a

du

u
exp(−u) = E1(a), (a > 0),

(21)

where E1(x) is the exponential integral (Abramowitz and
Stegun 1974). We thus have

J H(E1, E2) = 2π IM(E0, E1) FM(E1, E2)

∫ ∞

0
dz0 �(ρz0)

×
{∫ ∞

z0

dz exp [−µM(E2) sec θdz] E1 [µM(E1) (z − z0)]

+
∫ z0

0
dz exp [−µM(E2) sec θdz] E1 [µM(E1) (z0 − z)]

}
.

(22)

Now, to simplify the calculation, we take advantage of the
fact that the effective electron range Reff(E0, E

ion
i ) is much

smaller than the photon mean free path µ−1
M (E1), typically

10 times smaller or less (Birks et al 1966). This implies
that z0µM(E) � 1 and the second of the integrals on the
right-hand side of (22) is normally much smaller than the
first. Consequently, we may assume that primary photons are
emitted at the surface of the specimen, i.e. at z0 = 0. The
fluorescence correction can then be approximated as

J H(E1, E2) � 2π IM(E0, E1) FM(E1, E2)

×
∫ ∞

0
dz exp [−µM(E2) sec θdz] E1 [µM(E1)z] . (23)

The integral over z can be calculated analytically (Abramowitz
and Stegun 1974) and gives

J H(E1, E2) � 2π IM(E0, E1) FM(E1, E2)
1

µM(E2) sec θd

× ln

(
1 +

µM(E2) sec θd

µM(E1)

)
. (24)

The characteristic fluorescence E2 induced by primary
characteristic x-rays is obtained by adding the contributions
of all x-rays emitted with energies Ej larger than E2,

J H
ch(E2) =

∑
j

J H(Ej , E2) (Ej > E2). (25)

Similarly, the fluorescence originated from primary brems-
strahlung photons is obtained by integration over the
bremsstrahlung energy spectrum given by (7). That is

J H
br (E2) =

∫ E0

E2

J H(E1, E2)
dIbr,M(E0)

dE1
dE1. (26)

As the integrand is a smooth function of E1, this integral
is well suited for numerical evaluation. We use a simple
semi-analytical quadrature method based on log–log linear
interpolation on a table with uniformly spaced abscissae.
Finally, the total fluorescence intensity in the direction of the
detector is

J det
M (E2) = J H

ch(E2) + J H
br (E2). (27)

4. Fluorescence from a couple

Let us now consider the emission of fluorescent x-rays from
a couple consisting of two materials, A and B, separated
by a plane interface perpendicular to the surface of the
specimen. The electron beam impacts on the left-hand side
of the specimen (material A) at a distance d from the interface
(figure 4). Primary characteristic photons of energy E1 from
material A can induce emission of fluorescent photons of
energy E2 from materials A and B.

The fluorescence intensity from the right-hand side of the
couple (material B) is given by

J R(E1, E2) = IA(E0, E1)FB(E1, E2)

∫ π/2

0
dθ sin θ

∫ π

0
dφ

×
∫ ∞

d/(sin θ sin φ)

ds exp

(
−µA(E1)

d

sin θ sin φ
− µB(E1)

×
(

s − d

sin θ sin φ

)
− µB(E2)

s cos θ

cos θd

)
, (28)

where the first two terms in the argument of the exponential
describe the attenuation of primary photons in materials A and
B, respectively. The third term accounts for the attenuation
of fluorescent x-rays during their flight to the detector. For
simplicity, here we assume that detected secondary x-rays only
travel through material B, i.e. that the detector is in the right-
hand side of the interface, as shown in figure 4. Note that the
photon path lengths in materials A and B are

s1 = d

sin φ sin θ
, s2 = s − s1 = s − d

sin φ sin θ
,

s3 = s cos θ

cos θd
, (29)
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Figure 4. Reference frame and geometry adopted in the calculation
of fluorescence from a couple with material A on the left of
material B. Primary x-rays originate from point O where electrons
enter the specimen, at a distance d from the interface. Fluorescent
x-rays may be emitted from both materials.

where s = OP is the total path length of the primary photon.
The integral over s is analytical and gives

J R(E1, E2) = IA(E0, E1)FB(E1, E2)

∫ π/2

0
dθ

×
∫ π

0
dφ

sin θ

µB(E1) + µB(E2) cos θ sec θd

× exp

[
− d

sin θ sin φ
(µA(E1) + µB(E2) cos θ sec θd)

]
.

Introducing the function

G(x) =
∫ π

0
exp(−x/ sin φ) dφ, (30)

the intensity I2(E1) can be calculated with a single numerical
quadrature,

J R(E1, E2) = IA(E0, E1)FB(E1, E2)

×
∫ π/2

0
dθ

sin θ

µB(E1) + µB(E2) cos θ sec θd

×G

(
d

µA(E1) + µB(E2) cos θ sec θd

sin θ

)
. (31)

The function G(x) decreases monotonically with x, and
has the values G(0) = π and limx→∞ G(x) = 0.
Hence, the fluorescence intensity J R(E1, E2) decreases when
the distance d from the electron beam to the interface
increases. In the numerical calculations, the function G(x)

is evaluated by cubic spline interpolation from a precalculated
table. To reduce interpolation errors, the function actually
interpolated is ln[G(x)] for x � 0.35 and ln[π − G(x)]
for x < 0.35.

The fluorescence intensity from material A (left-hand
side of the couple) can be readily evaluated if one assumes
that the detector is on the left-hand side of the interface, so
that secondary photons reaching the detector do not cross the
interface. In this case, the contribution from the region y < 0

(on the left of the beam) is

J L,L(E1, E2) = IA(E0, E1)FA(E1, E2)

∫ π/2

0
dθ sin θ

×
∫ 2π

π

dφ

∫ ∞

0
ds exp

[
−µA(E1) s + µA(E2)

s cos θ

cos θd

]

= IA(E0, E1)FA(E1, E2) π
cos θd

µA(E2)

× ln

(
1 +

µA(E2) sec θd

µA(E1)

)
. (32)

Similarly, the intensity of secondary photons generated on the
right-hand side of the beam (0 < y < d) is

J L,R(E1, E2) = IA(E0, E1)FA(E1, E2)

∫ π/2

0
dθ sin θ

∫ π

0
dφ

×
∫ d/(sin θ sin φ)

0
ds exp

[
−µA(E1) s + µA(E2)

s cos θ

cos θd

]
= IA(E0, E1)FA(E1, E2)

×
∫ π

π/2
dθ

sin θ

µA(E1) − µA(E2) cos θ sec θd

×
[
π − G

(
d

µA(E1) − µA(E2) cos θ sec θd

sin θ

)]
. (33)

The total fluorescence from material A, J L = J L,L + J L,R, is
given by

J L(E1, E2) = IA(E0, E1)FA(E1, E2) 2π
cos θd

µA(E2)

× ln

(
1 +

µA(E2) sec θd

µA(E1)

)
− IA(E0, E1)FA(E1, E2)

×
∫ π

π/2
dθ

sin θ

µA(E1) − µA(E2) cos θ sec θd

×G

(
d

µA(E1) − µA(E2) cos θ sec θd

sin θ

)
. (34)

When d → ∞, the second term vanishes, i.e. all fluorescent
photons are emitted from material A, and

J L(E1, E2) � IA(E0, E1)FA(E1, E2) 2π
cos θd

µA(E2)

× ln

(
1 +

µA(E2) sec θd

µA(E1)

)
. (35)

In this limit, the fluorescence intensity is the same as for a thick
homogeneous specimen of material A, see (24).

The total fluorescence intensity in the direction of the
detector is obtained by adding the contributions from the two
materials. That is,

J det
AB(d; E2) = J L

ch(E2) + J R
ch(E2) + J L

br(E2) + J R
br(E2) , (36)

where

J
L,R
ch (E2) =

∑
j

J L,R(Ej , E2) (Ej > E2), (37)

and

J
L,R
br =

∫ E0

E2

J L,R(E1, E2)
dIbr,A(E0)

dE1
dE1 (38)

are the contributions from primary characteristic photons and
bremsstrahlung quanta, respectively.
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Figure 5. Primary (I det
M ), characteristic fluorescence (J H

ch) and bremsstrahlung fluorescence (J H
br ) intensities for Cr Kα x-rays emitted from (a)

an alloy steel, (b) a Ag(Cr) target and (c) a Bi(Cr) target as functions of the beam energy (see the text for details). The continuous lines were
calculated with the program fanal, crosses are results from Monte Carlo simulations with PENEPMA (joined by dashed lines for visual aid).

5. Practical calculations

Fortran programs have been written for the routine calculation
of characteristic line intensities of the elements present in a
couple and in a homogeneous specimen. The intensities of
primary photons are obtained from relatively short runs (less
than 60 min) of a modified version of PENEPMA, which describes
K-, L- and M-lines. The same program produces extensive
tables of photon attenuation coefficients (14) and subshell cross
sections for the photoelectric effect and Compton scattering.
A second program, named fitall, performs the least-squares
fits of the simulated intensities of primary photons and gives
the parameters of the analytical expressions (6) and (7). All
this information is stored in a single parameter file for each
material studied. The calculation of the primary intensity of
characteristic x-rays, (17), and the fluorescence contributions,
(27) and (36), is performed by a standalone program named
fanal, which reads the parameter files for the materials A
and B in the specimen couple and for the standard material M.
Atomic relaxation data, needed to determine the fluorescence
rates, (18) and (19), are read directly from the PENELOPE

database (Perkins et al 1991). The program fanal delivers
the calculated total, primary and fluorescence x-ray intensities

from the specimen, (36) to (38), as well as the intensities from
the standard, (25) to (27).

Figure 5 displays a comparison between calculated
and simulated characteristic and bremsstrahlung fluorescence
intensities for Cr Kα photons emitted from three homogeneous
specimens. These are an alloy steel (composition Si 0.26 wt%,
Cr 1.16 wt%, Mn 0.47 wt%, Fe 96.44 wt%, Ni 0.10 wt%, Cu
0.06 wt% and Mo 1.42 wt%), a Ag(Cr) target (Ag 99 wt% and
Cr 1 wt%) and a Bi(Cr) target (Bi 99 wt% and Cr 1 wt%).
For the sake of completeness, the corresponding primary
Cr Kα x-ray intensities are also displayed. Agreement
between calculated and simulated primary and characteristic
fluorescence intensities is remarkable. This is because
characteristic fluorescent x-rays are emitted isotropically, as
assumed in the calculations. In the case of bremsstrahlung
fluorescence, however, the calculations from fanal depart
somewhat from simulation results, especially at high beam
energies. Most of the differences are caused by our
simplifying assumption that bremsstrahlung photons are
emitted isotropically. As indicated above, this assumption
does not hold for the high-energy tip of the photon spectrum
because photons with energies close to the beam energy E0

are emitted by electrons that have travelled a small path length

8
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within the sample and, consequently, move in directions close
to that of the incident beam. Unfortunately, it does not seem
possible to account for the correlation between the energy and
the direction of emission of bremsstrahlung photons without
considerably increasing the complexity of the calculations.

EPMA measurements performed on material couples have
generally reported the so-called k-ratio, which is defined for a
characteristic line of element Za composing the A–B couple,
identified by the photon energy E2, as

k = I det
A (E2) + J det

AB(d; E2)

I det
M (E2) + J det

M (E2)
, (39)

where I det
A (E2) is the primary fluorescence intensity of the

measured line on material A (17) and J det
AB(d; E2) is the total

fluorescence intensity of the measured line on the A–B couple
when the electron beam impacts on material A at a distance
d from the interface (36). I det

M (E2) and J det
M (E2) are the

primary and total fluorescence intensities, respectively, of the
same line measured on a homogeneous sample (a standard)
of material M, under equivalent experimental conditions ((17)
and (27)). In the measurements and calculations presented
below, material M is the pure element Za , because this election
simplifies quantitative analysis (see, e.g., Reed 1993). It
is pertinent to mention that, for a bulk sample of material
A, J det

AB(d; E2) reduces to J det
A (E2), and then k × 100 gives

approximately the concentration ca (in %) of element Za (Reed
1993). In the case of measurements on a couple A–B such that
the active element Za is present only in material B, with the
electron beam impinging on material A at a distance d from
the interface, I det

A (E2) = 0 and k × 100 can be interpreted
as the approximate ‘apparent’ concentration of element Za in
material A due to fluorescence from material B.

6. Results and discussion

In order to assess the reliability of the proposed semi-analytical
calculation method and that of PENELOPE, we have compared
calculated fluorescence intensities with results from PENELOPE

simulations and with data from EPMA measurements on
material couples taken from the literature. The selected
measurements pertain to metal–metal (Bastin et al 1983,
Valovirta et al 2001), alloy–alloy (Bastin et al 1983) and
mineral–mineral (Dalton and Lane 1996, Wark and Watson
2006) couples. In this kind of experiment, the samples are
generally prepared by cold-pressing the two involved materials
together after they have been both ground and polished in
order to obtain a sharp interface when joined together. The
assembly is subsequently sectioned and polished. For the
selected experiments, the energies of the electron beam range
from 15 to 20 keV (as indicated in the figures). In general,
primary characteristic photons of energy E1 from material
A may induce emission of fluorescent photons of energy
E2 from both materials A and B. In some cases considered
below, the fluorescence photons are generated only through
the interaction of bremsstrahlung photons, while in other cases,
the fluorescence has contributions from both characteristic and
bremsstrahlung photons.

It should be noted that our semi-analytical calculation
scheme (as well as our Monte Carlo simulations) introduce

two simplifying assumptions, which depend on the orientation
of the specimen with respect to the spectrometer and may
affect comparison with experimental data. Firstly, as discussed
above, we have assumed that the detected secondary x-rays
only travel through the material where they are produced.
Thus, in the case of couples, the line intensities for x-ray
photons from material B are calculated by considering that
the detector is on the right-hand side of the interface (see
figure 4). Unfortunately, there is no guarantee that experiments
meet this requirement, because the orientation of the specimen
with respect to the x-ray detector is generally not given in
descriptions of EPMA measurements (the work of Dalton
and Lane (1996), is one of the few exceptions known to
the authors). In the case that the detector is placed on the
left-hand side of the interface, fluorescence x-rays will also
travel within material A in their way to the detector, with
attenuation coefficient µA. Thus if µA < µB, an increase
in the detected x-ray intensity is to be expected. The second
simplifying assumption is that all x-rays emerging from the
surface of the specimen in the direction of the detector are
assumed to be recorded, regardless of the position from where
they are emitted, which may be as much as several tens
of micrometres from the point of impact of the electron
beam. This is not the case for measurements performed with
wavelength-dispersive spectrometers, which have a maximum
focusing efficiency only for photons emitted from the Rowland
circle of the spectrometer (Reed 1993). As discussed by
Dalton and Lane (1996), the loss of efficiency (or degree of
defocusing) may be significant for x-rays generated along the
spectrometer direction, even a short distance from the Rowland
circle, but it is negligible for those x-rays generated along a
line perpendicular to the spectrometer direction. Note that
the sample orientation for which spectrometer defocusing is
minimal (interface along the direction of the spectrometer)
satisfies the condition that the detector is on the right-hand
side of the interface.

The Monte Carlo simulations reported here were
performed with PENELOPE using the main program PENEPMA

(Pinard et al 2012). As mentioned above, this program
implements the variance-reduction technique of interaction
forcing an increase of the efficiency of x-ray generation. The
emerging x-rays were tallied using an annular detector, which
covers the solid angle corresponding to (θd − 5o, θd + 5o).
The use of this annular detector represents a very effective
improvement in the efficiency of the simulation, although
it is only justified when the emerging x-ray flux is axially
symmetric. This introduces geometrical modifications similar
to those implicit in the semi-analytical calculations.

Figure 6(a) displays calculated, simulated and measured
Co Kα k-ratios as functions of the distance of the electron
beam to the interface for a Cu–Co couple, when the beam
impacts on the Cu side of the couple. The opposite case is
illustrated in figure 6(b), which shows the distance-dependent
Cu Kα k-ratio obtained when the beam impinges on the Co
side of the Cu–Co couple. The measurements were performed
by Bastin et al (1983). It is worth noting that when the electron
beam impinges on Cu (the element of highest atomic number),
Cu characteristic x-rays are able to ionize the Co atoms, and
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Figure 6. Comparison of measured, calculated and simulated Co (a) and Cu (b) Kα k-ratios versus electron beam distance d to the interface
for a Co–Cu couple and electrons impinging on the Cu (a) and Co (b) sides of the couple. The measured, calculated and simulated values
are represented by open squares, continuous lines and crosses (joined by dashed lines for visual aid), respectively.
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Figure 7. Comparison of measured, calculated and simulated Fe (a) and Cu (b) Kα k-ratios versus electron beam distance d to the interface
for a Fe–Cu couple and electrons impinging on the Cu (a) and Fe (b) sides of the couple. The measured, calculated and simulated values are
represented by open squares, continuous lines and crosses (joined by dashed lines for visual aid), respectively.

therefore, the observed Co k-ratio is due to the contributions
of both characteristic x-rays and bremsstrahlung. Conversely,
when the beam impacts on the Co side of the specimen (the
element of lowest atomic number), there is no characteristic
contribution to the fluorescence intensity of Cu Kα, which
is only due to the interaction of bremsstrahlung photons. In
both cases, the agreement between calculated, simulated and
measured k-ratios is remarkably good. It is interesting to note
that the observed differences between simulated and calculated
bremsstrahlung fluorescence intensities, see figure 5, have a
lesser effect on the k-ratios, because of a partial cancellation
of common factors in the intensities from the specimen and
from the standard. A similar comparison is illustrated in
figure 7, for a Fe–Cu couple. In this case, the experimental data
were measured by Valovirta et al (2001). Agreement between
simulated, calculated and measured k-ratios is, in general,
satisfactory, although it is not as good as in the case of the
Co–Cu couple. Both simulated and calculated k-ratios seem
to be slightly higher than the measurement values when the

beam impacts on the Cu side of the couple, and the calculated
k-ratios are somewhat lower than the simulation results when
the beam impacts on the Fe side of the couple.

Figure 8 compares calculated, simulated and measured
k-ratio profiles for couples consisting of a homogeneous
Cu(Co) alloy and a Co (4.1 wt% Cu) alloy as functions of the
distance from the beam to the boundary. These kinds of alloy
couples are typical starting materials for diffusion experiments
using the diffusion couple technique (Kodentsov et al 2001).
Two different Cu(Co) alloys, Cu (4.1 wt% Co) and Cu (2.4 wt%
Co), are considered, with the beam impacting on the Cu(Co)
alloy in both cases. The experimental data were measured by
Bastin et al (1983). For the two specimens, the measured
Co Kα x-ray intensity has a primary contribution (from
electron impact on the Cu(Co) alloy itself) and a contribution
from secondary fluorescence due to the interaction of Co
characteristic x-rays and bremsstrahlung within the Co(Cu)
alloy. In the case of the Cu (2.1 wt% Co) alloy, simulated,
calculated and measured fluorescence intensities agree well,
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Figure 8. Comparison of measured, calculated and simulated Co Kα k-ratios versus electron beam distance d to the interface for a Cu
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aid), respectively.

while for the Cu (4.2 wt% Co) sample, both simulated and
calculated intensities also agree well, but they give k-ratios that
are somewhat larger than experimental data. These differences
could be partially attributed to uncertainties in the geometrical
orientation of the sample, as discussed earlier.

Shown in figure 9 is a comparison of calculated, simulated
and measured k-ratios for Ti Kα x-rays emitted from a SiO2–
TiO2 couple, as a function of distance of the electron beam to
the boundary. The measurement of Ti in this mineral couple
is widely used for the purpose of determining the temperature
at which the minerals were formed (geothermometer). The
measurements were performed by Wark and Watson (2006),
who developed and calibrated this geothermometer. Note that
the fluorescent Ti x-rays are caused only by the interaction
of bremsstrahlung photons in the TiO2 phase. Even when
the electron beam impacts at a distance of 100 µm from the
TiO2 phase, the fluorescence contribution yields an apparent
Ti concentration of ∼100 ppm, which will result in sizeable
temperature overestimations. Both calculation and simulation
results are seen to agree well with measurements.

Up to now, we have focused our comparison on
single- or two-element materials. Apart from some minor
differences, the agreement between calculation, simulation,
and experiment was found to be fairly good. The next
comparison concerns the same kind of test but performed
on multi-component materials, namely couples of different
olivine minerals (i.e. a magnesium iron silicate with the
formula (Mg,Fe)2SiO4) in contact with diopside (i.e. a silicate
of the pyroxene group with the formula MgCaSi2O6). The
considered olivine samples are identified by their content of
the solid-solution end-member forsterite (Fo) (the lower the
forsterite content, the higher the Fe concentration). The
experimental measurements were performed by Dalton and
Lane (1996). Figure 10 compares calculated, simulated
and measured k-ratios for Ca Kα x-rays for the olivine–
diopside couples under consideration, as functions of the
distance from the electron beam to the boundary, with the
electron beam impinging on the olivine phase. In this case,
the secondary fluorescent Ca Kα x-rays originate essentially
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Figure 9. Comparison of measured, calculated and simulated Ti Kα
k-ratio versus electron beam distance d to the interface for a
SiO2–TiO2 couple and electron beams impacting on the SiO2 side of
the couple. The measured, calculated and simulated values are
represented by open squares, continuous lines and crosses (joined by
dashed lines for visual aid), respectively.

from the interaction in diopside of Fe Kα x-rays as well as
bremsstrahlung photons. In spite of the larger experimental
uncertainties, the comparison shows reasonable agreement
between calculations, simulations and measurements.

In conclusion, we have shown that the results of Monte
Carlo simulations of secondary fluorescence with PENELOPE

using the dedicated code PENEPMA give very good agreement
with EPMA experiments for a wide variety of material
couples. This gives us confidence in using the physical
interaction models implemented in PENELOPE in our semi-
analytical calculations. We have also shown that secondary
fluorescence intensities calculated by means of the proposed
semi-analytical method agree well with both Monte Carlo
simulations results and experimental data. The application
of the developed code for correcting on-line EPMA analyses
should be straightforward (see, e.g., Bastin et al 1983). Work
along these lines is currently in progress. The developed code
is publicly available from the authors.
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Figure 10. Comparison of measured, calculated and simulated Ca Kα k-ratio versus electron beam distance d to the interface, for couples of
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