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Abstract

We propose a model of boundedly rational and heterogeneous
expectations that unifies adaptive learning, k-level reasoning, and
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sponse to forecast errors, observed and counterfactual. The unified
model makes sharp predictions for when and how fast markets con-
verge in Learning-to-Forecast Experiments, including novel predic-
tions for individual and market behavior in response to announced
events. We present experimental results that support these predic-
tions. We apply our unified approach in the New Keynesian model
to study forward guidance policy.
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Unified Model

1 Introduction

The assumption of rational expectations (RE) continues to come under

scrutiny in macroeconomics and finance models in which RE plays a cen-

tral role. RE imposes strong assumptions on agents’ knowledge and cogni-

tive abilities that call into question the plausibility and robustness of some

model predictions. This issue is particularly acute when studying the gen-

eral equilibrium implications of structural change in RE models in which

there are several salient empirical puzzles, e.g. the forward guidance puzzle.

Increasingly, modelers are turning to boundedly rational alternatives to

RE such as adaptive learning (AL) (e.g. Evans, Honkapohja, and Mitra,

2009 and Gibbs and Kulish, 2017), level-k reasoning (e.g. Angeletos and

Lian, 2018, Garćıa-Schmidt and Woodford, 2019, and Farhi and Werning,

2019), and behavioral models (e.g. Arifovic, Schmitt-Grohé, and Uribe,

2018 and Goy, Hommes, and Mavromatis, 2020), to attempt to resolve the

puzzles.1 A common justification advanced by these studies is evidence in

support of their modeling choices from laboratory experiments.

The equilibrium nature of RE is seen most clearly in the simple guess-

the-average game. Subjects pick a number between 0 and 100, with the

winning number being closest to 2/3 of the average guess. A subject who

treats 50 as a focal point – the mean of a random guess from [0,100] –

might then choose the “level-1” guess of (2/3) × 50. However a subject

who thinks that other subjects make the level-1 guess, may make the level-

2 guess of (2/3)2 × 50, etc. The unique Nash equilibrium guess is zero,

but in one-shot games, even for grandmaster chess players, average guesses

are typically over 30, with winning guesses over 20: see Nagel, Bühren,

and Frank (2017). In many RE models, including Muth (1961), Lucas

(1972), and the New Keynesian model, this type of strategic uncertainty is

implicitly present but often ignored.

We seek to unify key elements of alternative bounded-rationality ap-

proaches to strategic uncertainty by marrying AL and level-k reasoning

1In our formal model, we assume agents have full information about the structure of
the economy. It is possible to retain RE while relaxing the full information assumption,
e.g. Bianchi, Lettau, and Ludvigson (2022) and Bianchi and Melosi (2014) consider
models in which agents are rational but face uncertainty about observed regime change.
In our macroeconomic policy example in Section 6, we extend our approach to a setting
with uncertainty about the duration of an observed policy regime.
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within a single heterogeneous-expectations behavioral model. Adaptive

learning and heterogeneous expectations capture the behavior of laboratory

subjects in Learning-to-Forecast Experiments (LtFE), e.g. Hommes, Sonne-

mans, Tuinstra, and Van De Velden (2007), Hommes (2011), and Hommes

(2013).2 Level-k reasoning provides a way to model general equilibrium

implications of forward-looking boundedly rational expectations, and has

wide experimental support: see Nagel (1995), Duffy and Nagel (1997),

Ho, Camerer, and Weigelt (1998), Bosch-Domenech, Montalvo, Nagel, and

Satorra (2002), Costa-Gomes and Crawford (2006), Nagel, Bühren, and

Frank (2017) and Mauersberger and Nagel (2018). This literature also

shows that in repeated “guess-the-average” games, a special case of our

univariate model, agents tend to shift over time to higher level-k forecasts.

Our model is populated by agents with perfect knowledge of the struc-

ture of the economy, but imperfect knowledge of the expectations of others.

To form forecasts, agents choose a sophistication level, k, that reflects level-

k deductions along the lines of Nagel (1995). Specifically, there is a forecast-

ing strategy of minimal sophistication, level-0, that uses a model-related

salient value, which in our setting will be history dependent, adapting to

observed data as discussed below. Level-1 agents use their knowledge of

the economy to choose a forecast that would be optimal if all other agents

are level-0; forecasts of level-k agents are defined inductively.

Central to our approach is that agents (i) have knowledge about the

economic structure – specifically about how outcomes depend on the ex-

pectations of other agents – but (ii) cannot directly observe the expectations

of other agents. Rational agents may understand that there is an RE equi-

librium (REE), yet refrain from holding expectations consistent with the

REE because they doubt that other agents will hold RE.3 The validity of

these doubts is well-established in the above-cited experimental literature.

Of course, rational agents might well consider the possibility that other

agents have heterogeneous expectations, in particular that other agents

2LtFE are laboratory experiments in which the sole or principal task of the subject
is to make forecasts of key economic variables.

3The eductive learning literature, e.g. Guesnerie (1992), Guesnerie (2002), empha-
sizes that both structural restrictions and strong higher-order common knowledge as-
sumptions would be needed for fully rational agents to coordinate on the REE.Eductive
reasoning more broadly refers to using knowledge of the economic structure to make
inferences about the possible expectations held by other rational agents.
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hold heterogeneous level-k beliefs. For any given distribution of level-k be-

liefs, the corresponding optimal expectation could be computed; however,

it is implausible that an agent would know this distribution. An advantage

of the level-k approach is that it focuses on choosing from an easily com-

putable set of forecasts based on depth of reasoning: level-k expectations

are optimal when the average expectation held by other agents is level k-1.

Also central to our approach is a dynamic setting: each period, agents

make decisions based on their forecasts and then observe outcomes. This

allows agents to learn from the data over time in two distinct ways: First, an

adaptive learning rule adjusts the level-0 forecast each period in response to

observed outcomes. Second, agents engage in predictor selection, based on

replicator dynamics. Level-k predictors that generate large forecast errors

lose users to the best level-k forecasts.

In stationary environments AL is known to converge over time to ratio-

nal forecasts, in a wide range of settings, and yet requires no knowledge of

structural parameters. It thus provides a simple, robust, and natural way

to model the evolution of level-0 forecasts. The motivation for the repli-

cator dynamics goes to our observation that agents have no information

on the distribution of different forecasts currently in use other than recent

observations of actual outcomes; the most natural dynamic for the propor-

tions of level-k forecasts is therefore for them to shift over time toward the

k-level that would have provided the most accurate forecast.

To summarize: our bounded rationality model, which we call unified

dynamics, includes three elements:

1. Adaptive learning to modify level zero forecasts.

2. A menu of level-k forecasts computed using the known structure.

3. Replicator dynamics that shift agents towards the optimal level-k.

We establish important theoretical results, including that in stationary en-

vironments unified dynamics can generate rational expectations equilibria

as emergent outcomes. We then use our approach to explain the findings of

lab experiments, and to examine implications of structural change in our

univariate model and policy change in our macroeconomic application.

We study the unified model first in the univariate set-up of Muth (1961).

After deriving sharp analytical results and examining simulations that illus-

trate the model’s implications for different types of expectational feedback,
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we take the model to the laboratory and test its core predictions using a

standard experimental design. We then extend our framework to the New

Keynesian model. We show that the unified model justifies low level-k as-

sumptions adopted in prominent papers such as Angeletos and Lian (2018)

and Farhi and Werning (2019).

There are other approaches in the literature. One strand assumes fixed

proportions of agents that differ in their sophistication. The simplest cases

include two categories: unsophisticated agents and fully rational agents

who take into account the proportion of nonrational agents. Gali and

Gertler (1999) and Jackson (2005) consider inflation dynamics when a fixed

proportion of agents follow naive rule-of-thumb forecasts, while the other

agents are fully rational. Mokhtarzadeh and Petersen (2021) explore a mon-

etary model in which a proportion of agents have expectations aligned with

central bank forecasts, while the other type are fully rational.

However, the models just described assume additional knowledge of the

sophisticated agents beyond knowing the structure of the economy: the

sophisticated agents must know the proportion of unsophisticated agents

and the specific forecast rules those agents are following. Of even greater

concern to us is that these approaches do not address the strategic uncer-

tainty that underlies the beliefs of the rational agents: optimal decisions

by agents depend on the prices they expect, but those prices depend on

the expectations of other agents, which, if these other agents include ratio-

nal agents, depend on the expectations that other rational agents expect

other rational agents to hold, ad infinitum. Truly sophisticated agents, who

know the economic structure, will not align their expectations with RE if

they are concerned that other sophisticated agents, at some level of this

recursion, do not have “rational” expectations.

Our framework addresses this concern and shows that the extent to

which agents coordinate on RE can evolve over time through both adaptive

and “eductive” level-k channels. It would be possible to extend our model

to include a known fixed proportion of naive agents that follow a known

specified rule-of-thumb, or to include a proportion of agents that are fully

rational in that they coordinate on RE given the proportions and forecasts

of all level-k (and naive) forecasts.4

4In an earlier version of the paper we included a proportion of agents that were fully
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The Cognitive Hierarchy (CH) approach of Camerer, Ho, and Chong

(2004), in contrast, allows for a distribution of “k-step” types. In the CH

framework this distribution satisfies two assumptions. First, every agent

believes, incorrectly, that there are no other agents with equal or higher

k-step beliefs; second, every agent knows the exact relative distribution

of lower k-step agents. Given these beliefs, k-step agents make optimal

decisions conditional on the implied forecasts obtained from those beliefs.

Camerer, Ho, and Chong (2004) focus on a family of Poisson distributions

that satisfy these assumptions. From our perspective, it is difficult to

understand how agents could come to know the distribution of lower k-step

types, yet at the same time not realize or consider that there are other

agents using equal or higher reasoning steps. These concerns would appear

to be even more acute in extensions to repeated or dynamic games.

In the CH approach, as well as in the Reflective Equilibrium approach

of Garćıa-Schmidt and Woodford (2019) discussed in Section 7, the anal-

ysis takes place at a single point in time. In contrast our unified model

provides full real-time dynamics for the time paths of level-k forecasts, the

proportions of agents using each forecast level, and for the associated time

path of the endogenous variables. Our model is suited for analysis of the im-

pact and subsequent dynamics of announced future policy changes, which

is often studied in the macroeconomic policy literature.

2 Overview of Model and Results

We develop our unified approach using the benchmark univariate linear

“cobweb” model of Muth (1961), allowing for either positive or negative

feedback. After fully examining the univariate set-up, both theoretically

and experimentally, we show how to extend this framework to a multivari-

ate forward-looking New Keynesian model and examine its implications for

announced policy changes, including monetary policy forward guidance.

The univariate model takes the form yt = γ + βÊt−1yt, where Êt−1yt

is the average of individual forecasts, made at time t − 1, of the variable

yt. Assume β ̸= 0, 1, and for simplicity assume there are no exogenous

rational, possessing the knowledge just stated, and we provided the “eductive stability”
condition needed for the rational agents to achieve expectational coordination under
suitable, strong common knowledge conditions as in Guesnerie (2002).
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random shocks so that the REE is yt = ȳ = (1− β)−1 γ. The case β < 0,

with negative expectational feedback, corresponds to the Muth cobweb

model of prices in an isolated market with a production lag, while the case

0 < β < 1, with positive expectational feedback, corresponds to a repeated

beauty contest or guess-the-average game.

Agents have heterogeneous level-k forecasts. Letting at−1 = E0
t−1yt de-

note the level-0 forecast at t − 1, level-k forecasts are defined recursively:

Ek
t−1yt = γ + β

(
Ek−1

t−1 yt
)
, for k = 1, 2, 3 . . . Letting ωkt denote the propor-

tion of agents with level-k forecast Ek
t−1yt, we have yt = γ+β

∑
k≥0 ωktE

k
t−1yt.

Under our unified approach, there are two channels of learning dynamics.

First, level-0 dynamics are driven by standard adaptive learning rules up-

dating at toward the most recent observation yt. Second, weights ωkt are

updated each period based on replicator dynamic that shifts weight toward

the k level providing the most accurate forecast the previous period.5

Section 3 gives the formal details of the model, including the adaptive

and replicator mechanisms that generate the unified dynamics. Section 4

presents a formal analysis of the asymptotic properties of the unified model,

together with quantitative illustrations of how qualitative features of the

dynamics depend on the feedback parameter β, both in a stationary setting

and in response to announced structural changes.

When β > 1 the asymptotic dynamics in a stationary setting are un-

stable, so that |yt| → ∞, whereas if |β| < 1 there is convergence over time

to the REE under unified dynamics, i.e. yt → ȳ. When |β| < 1 the adap-

tive learning and the replicator mechanisms are each sufficient to deliver

asymptotic convergence. If adaptive learning is shut down the replicator

dynamic generates asymptotic convergence by shifting weights over time

to higher k-levels. If instead the distribution of k-levels is fixed over time,

ωkt = ωk, the adaptive learning dynamics induces convergence of level-0

forecasts to the REE. Thus when |β| < 1 adaptive and level-k replicator

dynamics are complementary. In contrast, when β < −1 adaptive learning

5Our framework could be generalized in various ways. The level-k menu is straightfor-
ward to compute, and thus serves to provide natural focal points for forecasts. However,
the menu could be extended to include, for example, the average of level-k and level-
k+ 1 forecasts. One could also include level-k calculation costs that are increasing in k.
Although extensions like this may prove fruitful in experimental or empirical work, we
conjecture that our central findings would be qualitatively unaffected.
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and level-k dynamics can work against each other.

Simulations of the unified model provide additional insights. When

|β| < 1 convergence can be much faster than under adaptive or replicator

dynamics alone, and can lead to a mixture of high and low-level reason-

ers for extended periods with yt ≈ ȳ. When β < −1 our model makes

other novel predictions: convergence to the REE, unstable dynamics, and

bounded cycles that are not centered at the REE are all possible. These

findings can provide an explanation for the experimental results of Bao and

Duffy (2016) that when β < −1 market dynamics are distinctly different:

they observe both stable and unstable cases.

Section 5 takes our model to the lab.6 In our LtFE, we adapt the ex-

perimental design of Bao and Duffy (2016) to test key predictions of the

unified model. We place laboratory subjects into a computer-based mar-

ket that nests the cobweb model. Participants have full information of the

market structure. We consider both positive and negative expectational

feedback cases. A novel dimension of our experiment is announced struc-

tural changes at irregular intervals, which allows us (and the participants)

to clearly identify the level-0 beliefs. The unified model provides sharp pre-

dictions for the distribution of forecasts observed in announcement periods,

and for revisions to depth of reasoning in subsequent periods.

We find strong evidence for both adaptive and level-k type reasoning

underlying expectations. In particular, in announcement periods we can

classify between 50% to 70% of participants, depending on the measure, as

either level-0, 1, 2, 3 or as those who use a value close to the REE forecast.

Moreover, we find that larger numbers of subjects are classified as playing

k-level strategies in later announcement rounds. In our experiment level-k

behavior is observed across all treatments and is particularly prominent

when β < 0. In this latter case, we observe subjects making clear level-k

deductions that oscillate above and below the perfect foresight equilibrium,

behavior that is sometimes argued to be implausible when level-k reasoning

is adapted to more complex macroeconomic environments as in Garćıa-

Schmidt and Woodford (2019) and Angeletos and Sastry (2021).

We also find evidence for an additional prediction of the unified model:

6Readers wanting to focus on the macroeconomic application can omit Section 5
without loss of continuity.

7



Unified Model

in the wake of announcements subjects may lower their depth of reason-

ing. We document that some high-level reasoners experience large forecast

errors in announcement treatments. This causes a fraction of the high-

level reasoners to revise down their depth of reasoning. These downward

revisions can make the prevalence of low-level reasoning very persistent

Section 6 extends the unified framework to the New Keynesian model,

where we consider monetary policy forward guidance following a persistent

stagnation shock, as in Bilbiie (2019). We find that the coupling of adaptive

learning and replicator dynamics endogenously induces low level reasoning,

substantially reducing the power of monetary policy promises. Section 7

discusses related literature and Section 8 concludes.

3 The Model

In this section we develop our benchmark univariate model, which includes

agents with varying levels of forecast sophistication. Incorporating dynam-

ics via two distinct mechanisms through which agents can improve their

forecasts over time, we present and analyze the unified model.

3.1 The model

There is a continuum of agents. The aggregate variable at time t, given by

yt, is determined by the expectations of these agents, who are partitioned

into a finite number of types. Types are distinguished by sophistication

level, which is naturally indexed by the non-negative integers N. For k ∈ N,
the proportion ωk of agents of type k (i.e. having sophistication k) is referred

to as the weight associated with agent-type k. The distribution of agents

across types is summarized by a weight system ω = {ω0, . . . , ωM}, which is

a vector of non-negative real numbers that sums to one, and where M is

the number of agent types, which, in our dynamic settings, will typically be

endogenously determined and vary over time. We denote by Ω the collection

of all possible weight systems as M varies over N. This set, together with
its natural topology, are relevant for the analytic work in Section 4.

The forecasts made by agents with sophistication level k are given by
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Ek
t−1yt. Aggregate yt is determined as

yt = γ + β
∑M

k=0ωkE
k
t−1yt ≡ γ + β

∑
kωkE

k
t−1yt, (1)

where the equivalence on the right emphasizes that the implicitly limited

sum ranges over the indices of the given weight system, a convention we

adopt throughout the paper. We assume that β ̸= 0, 1, and note that

equation (1) nests the beauty contest or guess-the-average game, as well as

the cobweb model. There is a unique equilibrium ȳ = γ(1−β)−1 in which all

agents have perfect foresight: this equilibrium corresponds to the rational

expectations equilibrium (REE) of the simple RE model yt = γ + βEt−1yt.

Agents with level-0 beliefs hold a common prior and form their forecasts

accordingly as E0
t−1yt = a. Natural level-0 beliefs will depend on the model.

For example, the level-0 belief may reflect a salient value, as in the guessing

game model in Nagel (1995) where this is taken as the midpoint of the

range of possible guesses; or, in the cobweb model, the level-0 belief might

be determined by the previous equilibrium in a market-setting, before a

structural change has occurred, or it may be determined adaptively by

looking at past data.

Agents with higher-order beliefs are assumed to have full knowledge of

the model. We recursively define level-k beliefs as beliefs that would be

optimal if all other agents used level k − 1: E1
t−1yt = T (a) ≡ γ + βa and

Ek
t−1yt = T k(a) ≡ T

(
T k−1(a)

)
for k ≥ 2. Note that for k ≥ 1 agents are

assumed to know β and γ.7

Combining these definitions with equation (1) yields the realized value

of y as a function of level-0 beliefs, i.e. yt = T (a), where

T (a) = γ

(
1 +

β

1− β

∑
k≥0

(
1− βk

)
ωk

)
+

(
β
∑
k≥0

βkωk

)
a. (2)

We note that T is linear in a, and it is convenient to rule out the non-generic

case that the coefficient on a, given by, β
∑

k≥0 β
kωk, has a modulus of one.

Finally, we remark that the REE is a fixed point of T , i.e. T (ȳ) = ȳ.

7This assumption makes modeling anticipated changes, like those implemented in our
experiments, straightforward: any changes to β or γ known at time t− 1 that occurs in
time t are built directly into the forecasts of agents for which k ≥ 1.
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3.2 Adaptive dynamics

We define adaptive dynamics as corresponding to adaptive learning with

fixed level-k weights.8 Specifically, a weight system ω is taken as fixed and

level-0 forecasts E0
t−1yt ≡ at−1 are assumed to evolve over time in response

to observed outcomes. The system under adaptive dynamics is given by

yt = γ + β
∑

k≥0ωkE
k
t−1yt and at = at−1 + ϕ(yt − at−1), (3)

where 0 < ϕ < 1. The simple form of the updating rule for level-0 beliefs

reflects that our model is univariate and non-stochastic. The gain parameter

ϕ specifies how much the forecast adjusts in response to the most recent

forecast error. The time t forecasts at can be equivalently written as a

geometric average of previous observations with weights (1−ϕ)i on yt−i, for

i ≥ 1.9 Backward-looking rules like (3), as well as anchor and adjustment

and trend-following rules, are frequently found to well-describe behavior of

laboratory participants in LtFEs as in Hommes (2013). We focus on the

specification (3) in order to emphasize the novel features of our framework.

3.3 Replicator dynamics

We next allow agents to revise depth of reasoning over time based on their

past forecast performance. Nagel (1995) and Duffy and Nagel (1997) doc-

ument sluggish updating of reasoning depth in repeated guess-the-average

experiments.10 To capture this sort of updating behavior, we consider the

possibility that agents are relatively inattentive to revising their depth of

reasoning. We assume a small proportion of those agents using sub-optimal

reasoning levels revise their forecast methods, with the proportion depen-

dent on forecast error magnitude. This captures the behavioral premise of

Kahneman (2011) that much of decision-making is based on “thinking fast”

routinized procedures (using the same forecast method as in the previous

8We use the term “adaptive dynamics” to distinguish our model and results from the
well-understood “adaptive learning” case in which all agents are level-0.

9AL can be easily extended to models with observable exogenous shocks, and can
allow for heterogeneous forecasts across agents.

10Khaw, Stevens, and Woodford (2017) also document sluggish adjustment in a dif-
ferent experimental environment.
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period), while larger errors incline more agents to “think slow” (revisit and

revise their reasoning depth).

We formalize this process by using a replicator dynamic based onWeibull

(1997), Sethi and Franke (1995), and Branch and McGough (2008). We as-

sume the best level-k forecast gains more users over time while more poorly

performing forecasts lose users over time. Importantly, the largest depth of

reasoning considered is endogenous: agents are allowed to consider reason-

ing depths that have never been played in the game. Our dynamic shifts

weight from suboptimal predictors towards the optimal predictor accord-

ing to a “rate” function that depends on the forecast error. We define the

time t optimal predictor as k̂(yt) = min argmink∈N |Ek
t−1yt − yt|, where the

left-most “min” is used to break ties.11

The rate function r : [0,∞) → [δ, 1) with δ ≥ 0 satisfies r′ > 0.12

Finally, let ωkt be the weight of level-k beliefs in period t. The system

under replicator dynamics is given by

yt = γ + β
∑
k≥0

ωktE
k
t−1yt

ωit+1 =

{
ωit +

∑
j ̸=k̂(yt)

r
(∣∣Ej

t−1yt − yt
∣∣)ωjt if i = k̂(yt)(

1− r
(∣∣Ei

t−1yt − yt
∣∣))ωit else

(4)

We note that the replicator dynamic requires a given value a for level-0

beliefs, as well as an initial weight system ω0 = {ωk0}k∈N.

3.4 Unified dynamics

Unified dynamics joins adaptive dynamics and replicator dynamics. The

level-0 forecasts are updated over time as in Section 3.2 and the weights

evolve according to the replicator as in Section 3.3. The system under

11k̂(yt) exists: k → ∞, |β| < 1 (|β| > 1) implies Ek
t−1yt → 0 (Ek

t−1yt → ∞).
12An example of a suitable rate function is r(x) = 2/π tan−1 (αx), with α > 0 providing

a tuning parameter. We use this rate function for our simulation exercises.
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unified dynamics is given as

yt = γ + β
∑
k≥0

ωktE
k
t−1yt = γ + β

∑
k≥0

ωktT
k (at−1)

ωit+1 =

{
ωit + δr

∑
j ̸=k̂(yt)

r (|T j (at−1)− yt|)ωjt if i = k̂(yt)(
1− δrr

(∣∣T k (at−1)− yt
∣∣))ωit else

at = at−1 + ϕ(yt − at−1),

(5)

where δr ∈ {0, 1} indicates whether the replicator dynamic is operable.

We note that while the adaptive dynamics and replicator dynamics can be

viewed as special cases of the unified model, it is useful (and even necessary)

to analyze them in isolation; and we proceed this way in the next section.

We say the model is stable if yt converges to the perfect foresight equi-

librium ȳ for all relevant initial conditions, which, in case of the unified

dynamic, include initial beliefs a and initial weights ω. We say the model

is unstable if |yt| → ∞ for all relevant initial conditions, with a ̸= 0.

4 Properties of the unified model

We establish the analytic properties of the unified model, and then turn

to simulations for additional insights. These insights are aided by partial

analytic results concerning the dependence of k̂ on β.

4.1 Stability results

Our central result concerns the stability of the unified model.13

Theorem 1 (Stability of unified dynamics). Assume δr = 1 and 0 < ϕ ≤ 1.

1. If |β| < 1 then the model is stable: yt → ȳ.

2. If β > 1 then the model is unstable: |yt| → ∞.

If β < −1 then odd levels of reasoning introduce negative feedback while

even levels result in positive feedback. These countervailing tendencies can

result in complex outcomes but also make β < −1 difficult to analyze.

We turn now to the replicator dynamic with the adaptive learning mech-

anism shut down, i.e. ϕ = 0. In this case we start from an arbitrary

13Proofs of all theorems and propositions are found in Appendix A1.
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(non-zero) level-0 forecast that remains unchanged, and convergence takes

place through the replicator dynamic shifting weights over time to more

sophisticated, i.e. higher level, forecasts. We have the following result.

Theorem 2 (Stability of replicator dynamics). Assume δr = 1 and ϕ = 0.

1. If |β| < 1 then the model is stable: yt → ȳ. Also, t → ∞ implies

k̂ → ∞ and ωkt → 0 for all k ≥ 0.

2. If β > 1 then the model is unstable: |yt| → ∞.

Intuitively, when |β| < 1 the map T (a) operates as a contraction, and as

a result the optimal forecast level is higher than the average level used

by agents. This tends to shift weight under the replicator to increasingly

higher levels over time. However, as will be seen in the simulations, the

dynamics of ωkt for any given level k can be non-monotonic and complex.

When the replicator is shut down some additional notation is needed.

Let ∆n = {x ∈ Rn+1 : xi ≥ 0 and
∑

i xi = 1} be the n-simplex. The earlier-

defined set of all weight systems, Ω, is the disjoint union of these simplexes:

Ω = ∪̇n∆
n, where the dot over the union symbol emphasizes that, as subsets

of Ω, the ∆ns are pairwise disjoint. The set Ω inherits a natural topology,

sometimes called the final topology, from the relative topologies on the

∆ns: W ⊂ Ω is open if and only if W = ∪̇nWn, with Wn ⊂ ∆n open in ∆n.

Given β ∈ R, we may define ψβ : Ω → R by ψβ(ω) = β
∑

k β
kωk, which,

we recall from (2), is the coefficient of a in the formulation of the map T .

The following theorem establishes results under adaptive dynamics.

Theorem 3 (Stability of adaptive dynamics). Let δr = 0 and 0 < ϕ ≤ 1.

1. If |β| < 1 then the model is stable: yt → ȳ.

2. If β > 1 then the model is unstable: |yt| → ∞.

3. If β < −1 then ψβ is surjective, and

(a) If ψβ(ω) > 1 then the model is unstable: |yt| → ∞.

(b) If 1− 2ϕ−1 < ψβ(ω) < 1 then the model is stable: yt → ȳ.

(c) If ψβ(ω) < 1− 2ϕ−1 then model is unstable: |yt| → ∞.

(d) There exists open subsets Ωs and Ωu of Ω such that i) if ω ∈ Ωs

then the model is stable: yt → ȳ. ii) If ω ∈ Ωu then the model

is unstable: |yt| → ∞. iii) The complement of Ωs ∪ Ωu in Ω is

nowhere dense, i.e. its closure has empty interior.
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Items one and two of this theorem are analogous to the results obtained

in Theorems 1 and 2; here we also can draw conclusions when β < −1.

The surjectivity of ψ results from the expanding magnitudes and oscillating

signs of the βn. Adaptive dynamics may be written at = constant+(1−ϕ(1−
ψ))at−1, so that the surjectivity of ψ implies that stability and instability

may obtain for any value of ϕ. From item 3(b), two additional conclusions

can be drawn, and we summarize them as a corollary:

Corollary 1. Suppose δr = 0 and β < −1.

1. If −1 < ψβ(ω) < 1 then the model is stable for all 0 < ϕ < 1.

2. If ψβ(ω) < −1 then the model is stable for sufficiently small ϕ > 0.

Finally, item 3(d) evidences the challenge of predicting outcomes under

unified dynamics or replicator dynamics when β < −1. The stable and

unstable collections of weight systems are open and effectively cover Ω; as

weight systems evolve over time it is very difficult to determine whether

they eventually remain in either the stable or unstable regions.

4.2 Some results on k̂

The behavior of the replicator dynamic is determined by the optimal level

of reasoning, k̂. To gain intuition for the mechanics of the replicator we

study the dependence of k̂ on β for the special case of uniform weights. In

the online Appendix we show that k̂ = k̂(β, ω) is independent of a and γ.

Proposition 1 (Optimal forecast levels). Let K ≥ 1 and ωK = {ωn}Kn=0 be

a weight system with weights given as ωn = (K + 1)−1. Let k̂ = k̂
(
β, ωK

)
.

1. If |β| < 1 then K → ∞ =⇒ k̂ → ∞ and k̂/K → 0.

2. For given K, (a) β → −1− =⇒ k̂ →

{
1 if K is even

0 if K is odd

(b) β → −1+ =⇒ k̂ → ∞.

Although Proposition 1 examines only the specific case of uniform weights,

it reveals how contrasting results for the optimal choice of k depend on β.

When |β| < 1 and K is large, an approximately optimal forecast can be

achieved with k-level increasing in, but small relative to, K. However, with

β < −1, but |β| not too large, the optimal k takes values in {0, 1}, with the

specific value determined by aggregate parity, which is an aggregate measure

of optimism and pessimism (see also Proposition 1’ in the Appendix).
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4.3 Simulations of the Unified Model with Announcements

A novel feature of the unified model is that boundedly rational agents can

respond to anticipated events by incorporating information about changes

in the economic environment. To illustrate, we simulate an economy with

a non-zero REE, ȳ > 0 and a non-negativity constraint on y and Ek
t−1yt,

which mirrors our experiment discussed in the next section.

Simulations last 50 periods and γ undergoes two announced change:

γ = 60 for t < 20, γ = 90 for 20 ≤ t < 45, and γ = 45 for t ≥ 45. The

agents know the structure of the economy, the announced changes, and

take into account that yt ≥ 0 when making their forecasts following level-k

depths of reasoning. The announcements are spaced so that the economy

has converged to the pre-change steady state ȳ, which then constitutes the

level-0 forecast when the announced change takes place.

Figure 1 shows the simulated results for the unified model for three dif-

ferent β’s corresponding to the regions of interest identified by our stability

theorems. The parameter choices, announcements, and simulation length

mirror our experiment. Rows of the figure correspond to different feedback

settings. The first plot in each row shows the proportion of agents using

the level-0, 1, 2, and 3 predictors; the second plot shows the optimal pre-

dictor in use in each period; the third plot shows the level-0, 1, 2, and 3

predictions each period; the fourth plot shows equilibrium dynamics of yt.

Starting with β = 0.5, we note three features of the unified dynam-

ics. First, although yt = ȳ for many periods prior to the announcements,

there is not instantaneous convergence to the new REE. The existence of

low-level reasoners implies that the optimal depth of reasoning in the an-

nouncement period is also relatively low (second panel, bottom row). This

leads to large forecast errors for those using higher depths of reasoning.

Second, in response to these large forecast errors, some high-level reason-

ers will revise their beliefs down to lower levels of reasoning (see the first

and second panels, bottom row), leading to another transition period. And

third, although agents revise down their depth of reasoning, the proportion

who are using a high depth of reasoning remains greater than in the initial

periods because not all agents revise their forecasting strategy each period

(see first panel, bottom row; the proportion using k > 3 is not shown).
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Figure 1: Unified dynamics with announced structural change in period 20 and 45.

β = −0.9, α = 0.5, and ϕ = 0.2
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β = −2, α = 0.5, and ϕ = 0.2
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β = 0.5, α = 0.5, and ϕ = 0.2
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Notes: Simulation of unified dynamics with announced changes to the intercept and a known non-negativity constraint. ωn0 = 1/4 for n = 0, 1, 2, 3, and the time paths
for these four weights are distinguished by plot-style: red dotted, blue dash-dot, dashed magenta and solid black, respectively. The corresponding forecasts, Ek

t−1yt, use
the same style format.
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The top row of Figures 1 shows the simulation for β = −0.9. A sizable

proportion of agents uses relatively low levels of deduction even though

the economy has converged prior to the announcement. Therefore, in the

announcement period, the optimal depth of reasoning is low. The announce-

ments cause those using higher levels of deduction to make large forecast

errors. Some proportion of the high-level reasoners then revise their depth

of reasoning lower as a result.

Similar dynamics are found for a wide range of parameters with |β| < 1.

The presence of low-level reasoners when the announcements occur triggers

the dynamics shown in Figure 1. However, the mass of high-level reasoners

generally increases over time with repeated announcements.

The middle row of plots in Figure 1 shows a simulation for β = −2. Here

the choice of parameters matters greatly for the outcome, and we consider

a case in which the market converges after the first announcement. In

contrast to the |β| < 1 cases, the optimal depths of reasoning do not rise

over time. In fact, in order to stabilize the market, agents must choose

relatively low depths of reasoning when yt is not close to steady state.

When yt is away from the steady state, high depths of reasoning cause

the non-negativity constraint to bind and predictions are either zero or γ.

Therefore, the average depth of reasoning must remain low, in contrast to

the previous cases, or yt does not converge.

5 The Experiment

The unified model makes distinctive predictions for individual expectations

and market dynamics. We test these predictions using a standard LtFE

experiment. The experiment mirrors the simulated environment of Section

4.3 by having subjects participate in a repeated market for 50 periods, or

rounds. Subjects forecast the price of a good and are compensated for

forecast accuracy. Market price is pt = γ + βÊt−1pt + ϵt, where Êt−1pt is

the average price forecast across participants and ϵt is a small white noise

shock, as is standard in LtFE experiments. The shock sequence is the same

in all markets and treatments. We adopt a 3× 3 experimental design with

treatment variables expectational feedback (T#) and timing and size of an

announcements (A#). Treatments are given in Table 1.
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Table 1: Experimental Treatments

Feedback Treatments Announcements Treatments

T1: β = −0.9 A1: γ = 60 for t = 1, ..., 49 and γ = 90 for t = 50
T2: β = −2 A2: γ = 60 for t = 1, ..., 19 and γ = 90 for t = 20, ..., 50
T3: β = 0.5 A3: γ = 60 for t = 1, ..., 19, γ = 90 for t = 20, ..., 44, and γ = 45 for t = 45, ..., 50.

Using the 3 × 3 design, we investigate the following hypotheses, which

are based on our theoretical results and simulations.

Hypothesis 1 (Stability): Treatments β < −1 may not converge or may

result in slower rates of convergence compared to treatments |β| < 1.

When |β| < 1, Theorems 1 - 3 imply asymptotic stability of the REE for any

specification of the unified dynamic. In addition, the simulations suggest

rapid and possibly oscillatory convergence in T1 treatments and monotonic

convergence in T3 treatments. In T2 treatments, where β = −2, results

from Theorem 3 and from simulations suggest that asymptotic coordina-

tion on the REE is challenging under unified dynamics.14

Hypothesis 2 (Level-k Reasoning): Participants’ predictions in an-

nouncement periods in treatments A1 - A3 follow level-k deductions for all

treatments.

The announcement treatments allow us to identify if agents form high order

beliefs following level-k deductions because the rounds played before an an-

nouncement’s implementation provide an anchor for level-0 forecasts. Fig-

ure 1 illustrates k-level heterogeneity of individual forecasts; consequently,

forecasts should diverge from each other after the announcement. We do

not impose, or inform subjects of, a level-0 forecast so coordination on a

shared adaptive level-0 forecast is an integral part of the hypothesis.

Hypothesis 3 (Replicator Dynamics): In response to losses, some par-

ticipants revise their k-level (up or down) to the current optimal predictor.

Under unified dynamics, agents who revise their depth of reasoning choose

the optimal predictor based on the last period’s price. For some agents,

this may result in a reduction in reasoning depth: see Figure 1.

14We remark that with a finite number N of participants, the eductive stability con-
dition is relaxed to −N/(N − 1) < β < 1: see Gaballo (2013). The condition here is
−6/5 < β < 1. The A1 treatments are a replication exercise for Bao and Duffy (2016).
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Hypothesis 4 (Level-k Dynamics): The average depth of reasoning is

increasing over time for treatments T1 and T3, during intervals when the

structure is unchanged. The depth does not increase in the T2 treatments.

This hypothesis derives its intuition from results on replicator dynamics –

see Theorem 2. In particular, if |β| < 1 (i.e. T1 and T3) then k̂ → ∞,

whereas if β < −1 (i.e. T2) then k̂ is bounded. Finally, we note that

the four hypotheses, if true, provide evidence against simpler alternative

models. Standard heuristic switching models, for example, are ruled out by

Hypothesis 2. Fixed level-k models are ruled out by Hypotheses 3 and 4.

Purely adaptive dynamics is ruled out by all hypotheses. Confirmation of

the hypotheses supports the unified model over the nested alternatives.

5.1 Experiment description

The experiment used a computer based market programmed in oTree.15

Participants were randomly assigned to groups of six subjects to form mar-

kets. Participants acted as expert advisers to firms that produce widgets,

and were provided a tutorial on the market environment that included the

numerical demand and supply equations. Participants were informed that

the price depends on the average expected price across advisers and that

prices are subject to small white noise shocks.

Participants were given different stories about the market environment

in the positive (T3) and the negative (T1 and T2) feedback cases. The type

of feedback in the market is explained in detail with the paper instructions

given to participants containing a version of following text: “The market

has positive feedback. Therefore, if the average price forecast is high, then

the market price will be high. And, if the average price forecast is low, then

the market price will be low.” The negative case is stated similarly.16

The payoff for the participant’s predictions is 0.50− 0.03 (pt − Et−1pt)
2

where pt is the actual market price in the round, Et−1pt is their predic-

tion for the price in round t, and 0.50 and 0.03 are measured in cents.17

15See Chen, Schonger, and Wickens (2016) for documentation on oTree. Student
recruitment done through ORSEE: Greiner (2015). Figure A9 (Appendix) shows a
screenshot of the graphic user interface (GUI).The GUI includes market information in
a table, and time series plots of the price and the participants’ previous predictions.

16We checked for comprehension of the market environment: see Appendix.
17Negative quantities receive zero cents: see Appendix for further details.
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Announcements of changes in γ were made using a pop-up box. The box de-

scribed the change in parameters, and participants were required to close

the box before they could continue. The announcement would also ap-

pear, highlighted in red, across the top of the screen. Participants played

50 rounds without time limit. Afterwards, participants were asked which

strategy they used, which strategy they believed others used, and which

information they found most useful.

5.2 Experimental Results

In total, 372 individuals participated in 62 experimental markets: see Ap-

pendix for summary statistics. The first two columns of Figure 2 provide an

overview of results from the T1×A3, T2×A3, and T3×A3 treatments. The

third column shows the unified model’s fit to the aggregate experimental

data. The last column shows the best fit of the nested models within the

unified dynamics when either AL, the replicator, or level-k deductions is

omitted. The last two columns are discussed in Section 5.2.5, and shown

here to demonstrate the necessity of all elements of the unified dynamics.

5.2.1 Convergence Results The second column of Figure 2 shows

convergence properties found across treatments. T1 and T3 quickly con-

verge a few periods after the experiment begins. Markets destabilize fol-

lowing announcements, but quickly re-converge within a few periods. T2

is more volatile: convergence takes longer and individual forecasts continue

to vary widely even after near convergence. We measure convergence using

three metrics. We discuss the ratio metric here and refer to the Appendix

for metrics based on mean price discrepancy and mean earnings.

Define a round to be converged when price is within ±3 of the steady-

state. The ratio metric applied to consecutive rounds is the proportion of

converged rounds. A collection of consecutive rounds has converged if the

ratio metric is at least 0.85. By this metric, none of the feedback treatments

show convergence within the first five periods or within five periods after

the first announcement. However, convergence is achieved for T1 and T3

over rounds 6 to 10, rounds 26 to 30, and overall for the full intervals. For

T2, the 85% threshold is never reached. These convergence results, along

with other metrics provided in the Appendix, support Hypothesis #1.
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Figure 2: Comparing the unified model to experimental data
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Notes: Survey participants’ forecasts are classified as Level-0, 1, 2, 3, or consistent with the REE forecast by comparing to the model implied forecasts. The median forecasts, Et−1y
k
t , for k = 0, 1, 2, 3

are distinguished by plot-style: red dotted, blue dash-dot, magenta dash and black solid, respectively. The second column shows average market prices observed (solid black) laid over all individual
forecasts. The third column is a fitted unified model with simulated paths initialized to the experimental distribution. The fourth column show best fit alternatives with α = 0 (blue), ϕ = 0 (pink), and
adaptive learning only (green).
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5.2.2 Level-k results A novel feature of our experimental design rel-

ative to other level-k studies is that there are many rounds of play before

an announcement round. These rounds of play provide a natural refer-

ence point to coordinate level-k deductions around a shared level-0 fore-

cast. From this shared level-0 forecast, it is straightforward to predict what

types of forecasts we should observe in announcement rounds. In addi-

tion, the very first round of play provides a check on this logic. In the

first round, there is no shared history to draw upon and no natural level-0

forecast. Comparing participants’ forecasts in round one to those in subse-

quent announcement periods provides a check for whether participants are

coordinating around an adaptive level-0 forecast.

To investigate the degree to which laboratory participants’ forecasts fol-

low level-k deductions, we proceed by constructing the implied level-0, 1,

2, 3, and REE forecasts for each experimental market and compare these

forecasts to the actual forecasts that laboratory participants submitted.

Specifically, we define the level-0 forecast as the average of the two most

recent prices.18 Using this level-0 forecast for each market, we then con-

struct the implied level-1, 2, 3, and the REE forecasts. Then, we calculate

the absolute difference between a subject’s forecasts in each round and each

of the model implied forecasts. We classify each forecast as either level-1,

2, 3, or the REE according to which has the smallest observed difference.

Conflicts in classification, if they arise, are resolved by assigning to the

lowest level of reasoning. For the first round, when there is no past history

of prices, we use the price from the example on the instructions for the T1

and T2 treatments as the level-0 forecast. The modal forecast given by

participants in these treatments is close to this value despite no theoretical

reason for why people should choose it. For the T3 treatment, we choose

the modal forecast observed in the experimental data in round one as the

level-0 forecast.

We stop our classification of types at level-3 deductions because higher

levels of deduction become hard to distinguish from the REE forecast in

18The results are robust to reasonable changes in the definition of level-0 forecast. In
the Appendix we reproduce all of our results under the five alternative level-0 assump-
tions including three constant gain learning specifications and find qualitatively similar
results. We also explore one market in detail in the Appendix, which illustrates further
how the classification works in practice.
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the T1 and T3 treatments, and from one another in the T2 treatments

in certain settings. We find that approximately 40% of subjects’ forecasts

that we classified as the REE forecast in a round submit exactly the REE

forecast. The remainder are within the ±3 of it. Therefore, the REE

forecast designation likely includes some higher levels of deductions as well.

The upper-left part of Table 2 summarizes the proportion of individuals

classified as level-k (for k = 0, 1, 2, 3) or REE, for each of the announcement

rounds using this ±3 cutoff. The data from all treatments are pooled. The

ranges in square brackets show the classification proportions associated

with a ±1.5 and ±4.5 cutoff, respectively. Overall, using the ±3 cutoff,

we find about half of participants follow a level-k forecast or choose the

REE in round one. This number rises to approximately two-thirds for the

second and third announcements.

Table 2: Classifying participants’ forecasts as Level-k

Within ±3 of Level-k in announcement rounds Differences in deliberation time (seconds)

1 20/50 45 Variable (1) (2)

Total Classified 47.3% 64.4% 66.0% Level 0 -5.87 -1.26
[33.8% , 56.9%] [52.6% , 71.6%] [48.1% , 70.5%] (0.859) (0.556)

Level-1 -5.07 -0.73
Level-0 14.8% 6.6% 5.1% (0.925) (0.684)

[11.0% , 15.1%] [4.31% , 8.05%] [4.49% , 7.05%] Level-2 -4.06 -1.13
(1.191) (0.840)

Level-1 7.3% 24.1% 14.1% Level-3 -3.97 0.28
[6.45% , 8.60%] [20.7% , 26.7%] [12.2% , 14.1%] (1.366) (1.112)

Level-0 x Ann 45.23 2.42
Level-2 6.5% 5.5% 3.8% (8.762) (6.020)

[1.88% , 6.45%] [4.60% , 5.75%] [1.92% , 3.85%] Level-1 x Ann 43.25 12.09
(4.710) (4.580)

Level-3 3.2% 3.4% 4.5% Level-2 x Ann 59.63 12.87
[1.11% , 11.3%] [2.87% , 4.02%] [3.85% , 5.13%] (8.800) (8.390)

Level-3 x Ann 62.93 22.25
REE 15.6% 24.7% 38% (11.79) (8.095)

[13.4% , 15.6%] [20.1% , 27.0%] [25.6% , 40.4%] Cons 39.54 112.67
(0.453) (4.205)

N 372 348 156 Individual FE yes yes

Hypothesis tests of deliberation time regressions Round FE no yes

H0 : Level-0 - Level-3 = 0 F(1, 61) =1.92 R-squared 0.027 0.253
H0 : (Level-0 x Ann) - (Level-3 x Ann) = 0 F(1, 61) =4.58 N 18,367 18,367

Notes: The top left panel reports the proportion of participant’s forecasts that fall within ±3
of a Level-k forecast. Proportions for cutoffs of ±1.5 and ±4.5 are shown in brackets. The
right panel reports the regression results of identified Level-k individual’s deliberation time in
all periods and in announcement periods. Standard errors are clustered at the market level and
reported in parenthesis below the point estimates. Bolded values indicate statistical significance
at the ten percent level. The bottom left panel reports the hypothesis tests for the equality of
regression coefficients for regression specification (2). We pool A1 (round 50 announcement) and
A2 (round 20 announcement) results because both experiments feature a single and identical
announcement.

The right side of Table 2 provides a logical check on our classifications.

It is natural to think that higher levels of deduction require greater cognitive
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resources: a person who makes a level-0 forecast might not spend as much

time formulating a forecast as someone who makes a level-3 forecast. If

our classifications are identifying people who are making level-k deductions

we should find a correlation between the time spent deliberating and the

depth of reasoning that we identify.

To investigate this, we estimate the following regression model:

di,r = αi + ωr +
∑
k

βkI(k)i,r +
∑
k

γk
(
I(k)i,r × I(Ann)r

)
+ ϵi,r, (6)

where di,r is the time spent deliberating by person i in round r, αi is an

individual fixed effect that controls also for treatment and market, ωr is

a round fixed effect since typically less time is spent deliberating in later

rounds, I(k)i,r is an indicator identifying whether person i is classified as

choosing a level-k forecast in round r; and I(Ann)r is an indicator identi-

fying whether an announcement is made in round r. Standard errors are

clustered at the market level. The coefficients βk and γk estimate the differ-

ence in deliberation time, overall and in announcement rounds respectively,

for those identified as level-k for k = 0, 1, 2, 3, relative to those whom we

identify as choosing the REE forecast or we fail to classify.

The regression results confirm our hypothesis. We find that those whom

we identify as level-0 spend the least amount of time deliberating on their

forecast overall, and in announcement rounds. Those identified as level-3

spend the most amount of time among the classified types in all rounds, and

in announcement rounds, with the difference between deliberation times of

level-0 and level-3 participants statistically different at standard signifi-

cance levels. Figure A11, in the Appendix, shows histograms of individual

forecasts in round one and in each announcement round for each feedback

treatment. For these announcement rounds, Figure A11 and Table 2 show

a majority of participants playing level-k or the high level-k/REE forecasts,

providing support for Hypothesis #2.

The exit surveys also support this interpretation. On average, partici-

pants claim that the equations and a forecast of average expectations were

more important for them than for other participants. Further, participants

claim that past prices were more important for others’ forecasts than their

own. The survey results are discussed in the Appendix.
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Finally, Garćıa-Schmidt and Woodford (2019) and Angeletos and Sas-

try (2021) put forward models of bounded rationality that modify level-k

reasoning to rule out oscillating deductions when there is negative expec-

tational feedback. Angeletos and Sastry (2021) writes, “We are not aware

of any experimental evidence of this oscillatory pattern. We suspect that

it is an unintended “bug” of a solution concept.” In the Appendix, we pro-

vide evidence of clear oscillating deductions consistent with classic level-k

reasoning for individual participants over time.

5.2.3 Revisions to the depth of reasoning The replicator employs

three key assumptions. First, in any given period and for any level k, some

participants maintain their depth of reasoning. Second the proportion of

k-level reasoners who revise their depth of reasoning is increasing in the size

of the most recent forecast error. Third, participants who revise their depth

of reasoning choose the level that would have been optimal last period.

To test these features of the replicator dynamic, we make use of the

announcements in the A2 and A3 treatments, which allow us to identify

level-k deductions. Structural change leads to large forecast errors for many

participants, and provides counterfactual level-k predictions that can be

used to identify revisions to depth of reasoning in the following period.19

We find evidence consistent with our replicator assumption for all three

key aspects: (i) a proportion of subjects do not update their strategy fol-

lowing the announcement period; (ii) subjects who changed strategy ex-

perienced larger forecast errors and spent more time deliberating; (iii) a

significant proportion of those who do change strategy choose the previous

period’s optimal k-level strategy. See Table A4 in the Appendix for details.

These findings support Hypothesis #3.

5.2.4 Level-k Dynamics The unified model predicts increasing depths

of reasoning in T1 and T3 treatments but not in T2 treatments (when

convergence is obtained). We show in the Appendix that the distribution

of level-k forecasts chosen in treatments with two announcements shifts to

the right over time when |β| < 1 but does not do so when β < −1. In the

latter case, we observe a bifurcation where more level-0 and REE forecasts

19The classification of forecasts is restricted to level-0, 1, 2, 3, and REE, and is given
by the level-k strategy nearest in mean squared error to the submitted forecast.

25



Unified Model

are played. Overall, these results are consistent with Hypothesis #4.

5.2.5 Quantitative Evaluation In this section, we use aggregate

price data to compare the fit of the unified model to the fit of simpler

alternatives models: a fixed level-k model, a replicator-only model, a pure

adaptive learning model, and REE.20

We use our classification of level-k types in period one to initialize the

models in each market. The fixed level-k model allows for the level-0 fore-

cast to evolve over time with the proportion of agents using different level-k

types fixed to the initial values. The replicator-only model assumes a fixed

level-0 forecast but allows for the choice of level-k forecasts to vary over

time. The adaptive learning model shuts down the replicator and assumes

all agents use the same level zero forecast, which evolves over time as new

data become available.

For each version of the model and for each individual market, we com-

pute the mean-squared error (MSE) measured as the average over time of

the squared difference between the market price and the price obtained

by simulating the model using the fitted values of the associated learning

parameters. Table 3 shows the average of the MSEs across the T1×A3,

T2×A3, and T3×A3 markets. For given treatments, the average prices

across markets, and simulations from each fitted model, are shown in the

right two columns of Figure 2. The individual market outcomes are re-

ported in the Appendix.

Using the Wilcoxon ranked-sign test, we compare the individual-market

MSEs of the unified model to those of the alternative models. For each

of the expectational feedback treatments, the median MSE of the unified

model is lower than of the adaptive learning model at the 10% level; and

for the T1 and T3 treatments it is lower than for the REE at the 5%

level.21 The unified model also outperforms the fixed level-k model and the

replicator-only model across all three treatments at least the 5% level.

20For each model (except REE), we compute the forecast parameters minimizing the
squared error between the simulated data and the experimental data.

21For the T2 treatments, the test fails to reject the null hypothesis for equality com-
pared to the REE. We note that the realized market prices are not induced by partici-
pants having rational forecasts: see second column of Figure 2.
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Table 3: MSE of competing models

Treatment RE Unified Model Fixed Level-k Replicator only Adaptive learning

T1 × A3 (β = −0.9) MSE MSE Rel. RE MSE Rel. RE MSE Rel. RE MSE Rel. RE

Ave. of All Markets 13.15 5.95 0.45 12.37 0.94 9.80 0.74 22.26 1.69
T2 × A3 (β = −2)
Ave. of All Markets 51.82 48.38 0.93 422.71 8.16 70.98 1.37 63.39 1.22
T3 × A3 (β = 0.5)
Ave. of All Markets 37.17 19.83 0.53 20.78 0.56 49.44 1.33 50.51 1.36

Notes: Average mean square error (MSE) of five simulated models of aggregate price
dynamics compared to experimental market price data. “Rel. RE” reports the MSE of
the model relative to RE MSE, i.e., Model MSE/RE MSE. Individual market MSEs that
underlie the averages in this table are shown in Table A5 in the Appendix. Models are
fit by doing a grid search over values α ∈ [0, 2] and ϕ ∈ [0, 1].

5.2.6 Discussion The experimental results on individual behavior pro-

vide strong support for the four hypotheses. The quantitative evaluation

of aggregate data provides evidence that each of underlying mechanisms –

adaptive learning, level-k and replicator dynamics – are needed to explain

the aggregate data.

6 Unified Dynamics in the New Keynesian Model

The economic environment that we have studied thus far is univariate

and relies on one-step ahead expectations. The microfoundations of most

macroeconomic models of the business cycle, however, imply agents must

form expectations over multiple future variables. To show that our the-

oretical and experimental results are useful for understanding these more

complicated environments, we employ unified dynamics in the standard

New Keynesian model to investigate forward guidance monetary policy.

Level-k reasoning has been proposed as a solution to the forward guid-

ance puzzle in New Keynesian models, in which credible promises of future

monetary policy are found to be implausibly powerful under RE. Angeletos

and Lian (2018) or Farhi and Werning (2019) show the puzzle can be re-

solved if agents are exogenously assumed to be low-level reasoners. We use

our model, which endogenizes reasoning levels, to study this issue. We show

that under forward guidance, low-level reasoning organically emerges, and

we find that the three mechanisms of unified dynamics interact to resolve

the puzzle.

We proceed in three steps. First, we introduce the model and the for-
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ward guidance policy problem confronting monetary policymakers. Second,

we show how a special case of this environment reduces to a univariate

model closely related to the model studied in the previous sections. Finally,

applying our unified framework to the bivariate NK-model, we examine the

implications of an exogenous shock that puts the economy at the zero lower

bound. We find that low level-k reasoning can be an endogenous outcome,

substantially lowering the power of monetary policy promises.

6.1 Forward guidance policy problem

We consider the standard New Keynesian economy as described in Wood-

ford (2003). Under RE, household and firm decisions are approximated by

IS and Phillips curve relationships:

xt = Etxt+1 − σ(it − Etπt+1 − rnt ) (7)

πt = ξEtπt+1 + κxt, (8)

where xt is the output gap, πt inflation, it is the nominal interest rate,

rnt is the natural real rate of interest, ξ is the discount factor, σ is the

intertemporal elasticity of substitution, and κ is a composite parameter

that is determined by the degree of price rigidity in the economy.

The exogenous driver of the economy is a Markov process with states S

(stagnation) and N (normal) (known to all agents), which determines the

natural rate rnt . In the stagnation state, rnt = rS < 0 and in the normal

state rnt = rN > 0. For the experiment under consideration we assume

that, in period zero the economy unexpectedly enters the stagnation state,

and it remains there each period with probability 1− δ.

The policy problem is how policymakers should respond to this unan-

ticipated shock. We assume the central bank seeks to minimize the loss

function

minE0

{
1

2

∞∑
t=0

ξt
(
π2
t + ψxx

2
t

)}
(9)

subject to (7), (8), and it ≥ 0.

Optimal discretionary policy is to set the nominal rate at zero in the

stagnation state. To study forward guidance, we follow Bilbiie (2019) and

assume that policymakers engage in a partial commitment strategy: in
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state S the bank announces that it will continue to hold the interest rate

at zero beyond the end of state S, i.e., provide forward guidance. The

implementation of this policy involves a probabilistic return to normalcy:

after the natural rate returns to its normal value of rN policy makers con-

tinue to hold the interest rate at zero each period with probability 1− ν.

With policy modeled in this fashion, the economy is now driven by a

three-state Markov process with states S, F (forward guidance) and N ,

and with transition matrix

P =

 1− δ δ(1− ν) δν

0 1− ν ν

0 0 1

 .

Forward guidance policy is thus reduced to a single parameter choice: ν.

6.2 Unified dynamics in the New Keynesian Model

To develop unified dynamics in this multivariate environment, we, as usual,

interpret Etxt+1 and Etπt+1 in (7) and (8) as the average expectations across

agents of output gap and inflation in period t + 1. In this way, equations

(7) and (8) can be taken as the current period best response functions over

which the agents do level-k deductions.22 This is the standard assumption

employed in macroeconomic laboratory experiments that test expectation

formation in the New Keynesian model such as in Mokhtarzadeh and Pe-

tersen (2021) and Kryvtsov and Petersen (2021).23

To illustrate how level-k deductions work in this setting, and to facilitate

connections to our previous analysis, we begin by deriving these deductions

in the special case κ = 0 in which prices are fixed, so that inflation and

inflation expectations are zero, and no forward guidance, i.e. ν = 1. The

general case is derived in the Appendix.

Assume that in period t ≥ 0 the economy is (still) in state S and

discretionary monetary policy is pursued. We assume that, in state S,

22In environments with long-lived agents there are a variety of ways to model decision-
making: for an alternative implementation see Preston (2005), and for further discussion
see Evans and McGough (2020) and Evans and McGough (2021).

23Angeletos and Lian (2018) and Farhi and Werning (2019) develop alternate imple-
mentations of k-level deductions in New Keynesian environments.
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level-0 agents hold forecasts E0
t [xt+1|S] = axt−1, and that in state N , level-

0 agents hold forecasts E0
t [xt+1|N ] = 0.24 We continue to assume that

level-1 agents assume that all agents are level-0. Thus for given level zero

expectations axt−1 of the output gap in state S, level-1 forecasts are obtained

as follows:

E1
t [xt+1|S] = (1− δ)E0

t+1[xt+2|S] + δ E0
t+1[xt+2|N ]︸ ︷︷ ︸

0

+σ(1− δ)rS

= (1− δ)axt−1 + σ(1− δ)rS.

Here, for example, E0
t+1[xt+2|N ] is the period t + 1 forecast of xt+2 made

by level-0 reasoners, given that the state is N in period t + 1, with this

notation being extended in the obvious way.

Level-2 agents assume that other agents are level-1, thus

E2
t [xt+1|S] = (1− δ)E1

t+1[xt+2|S] + δE1
t+1[xt+2|N ] + σ(1− δ)rS

= (1− δ)
(
(1− δ)axt−1 + σ(1− δ)rS

)
+ σ(1− δ)rS.

Continuing in this way, we can define E0
t [xt+1|S] = axt−1,

E1
t [xt+1|S] = T (axt−1|S) ≡ (1− δ)σrS + (1− δ)axt−1,

Ek
t [xt+1|S] = T k(axt−1|S) ≡ T

(
T k−1(axt−1|S)

)
for k ≥ 2.

Combining these definitions with the IS equation (7) and substituting in
aggregate beliefs yields the realized value of x in state S as a function of
level-0 beliefs, i.e. xt = T (axt−1|S), where

T (ax|S) = σ ·rS

1 + δ−1(1− δ)
∑
k≥0

(
1− (1− δ)

k
)
ωk

+

∑
k≥0

(1− δ)
k
ωk

 ax. (10)

Note T is linear in ax and (10) is the analog to equation (2) in Section 2.

In the Appendix, we show that level-k deductions expand to include the

forward guidance policy and to the multivariate case in the same way. The

explicit T-map that governs level-k deductions is provided in the Appendix.

24The narrative here is that there has been an extended period in which the economy
has been in state N , and agents have learned that in state N output gap is zero. By
contrast, state S (or F ) is novel/unusual, and agents have to learn about it.
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Turning now to the replicator, denote the state in time t by zt ∈ {S, F}.
Next, recall that if, in period t− 1, the state is either S or F , the forecasts

of level zero agents are not conditional on the realization of the state in

period t, i.e. E0
t−1[yt] = ayt−1, y ∈ {x, π}, regardless of the value of zt.

However, for k ≥ 1, level-k reasoners understand the economy’s structure

and incorporate it into their forecast behaviors. Thus, agents using level-k

reasoning for k ≥ 1 make forecasts in period t− 1 that are conditional on

the realization of zt, i.e. E
k
t−1[yt|zt].

In the New Keynesian model agents make forecasts of both the output

gap and inflation. Therefore, agents have two forecast errors to consider

when assessing the appropriate level-k strategy to choose. To accommodate

this change, we assume that the agents evaluate the following loss function

Lk
t (zt) =

∣∣∣Êk
t−1[πt|zt]− πt

∣∣∣+ ψx

∣∣∣Êk
t−1[xt|zt]− xt

∣∣∣ , (11)

where 0 < ψx ≤ 1 is the same weight the central bank applies to deviations

of inflation and the output gap from target. The state-contingent time t

optimal predictor is given by

k̂(xt, πt, zt) = min argmin
k∈N

Lk
t (zt), (12)

where the left-most “min” is used to break ties just as before.

When zt = S, F , unified dynamics in the NK model are given as

xt =
∑
k≥0

ωktE
k
t xt+1 − σ(it −

∑
k≥0

ωktE
k
t πt+1 − rnt )

πt = ξ
∑
k≥0

ωktE
k
t πt+1 + κxt

ωit+1 =

{
ωit +

∑
j ̸=k̂(yt)

r
(
Lj

t(zt)
)
ωjt if i = k̂(xt, πt, zt)(

1− r
(
Lk

t (zt)
))
ωit else

axt = axt−1 + ϕ(xt − axt−1) and a
π
t = aπt−1 + ϕ(πt − aπt−1),

(13)

The final two equations capture the adaptive dynamics of level-0 reasoners.
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6.3 Low-levels of deduction and forward guidance

The crux of the forward guidance puzzle is that general equilibrium effects

of anticipated policy are too strong under RE. Level-k reasoning offers an

illustration of why this occurs. Consider first the univariate NK special

case, i.e. when prices are fixed and aπ = 0. Level-k forecasts for the output

gap are given by E0
t xt+1 = ax, E1

t xt+1 = σ(1− ν)rN + (1− ν)ax, and

Ek
t xt+1 = ν−1

(
1− (1− ν)k

)
σrN + (1− ν)kax. (14)

Since 0 ≤ ν ≤ 1, we see that Ek
t xt+1 is bounded between 0 and kσrN + ax.

In the RE limit (k → ∞) we have Ek
t xt+1 → σrN/ν, which is unbounded

as ν → 0, i.e. as the forward guidance period is extended. Thus forward

guidance can provide infinite stimulus under RE. However, if the average

level of reasoning is low, the power of forward guidance is reduced.

This special case shows that forward guidance policy controls the econ-

omy’s expectational feedback, with 1 − ν the analog to β found in the

univariate model of Section 3. Therefore, applying the intuition obtained

from Proposition 1, we would expect that, with uniform weights and κ = 0,

the bound on the optimal reasoning level would be approximately 50% of

the highest level in use. Moreover, because a lower-level response is opti-

mal, agents using higher level-k reasoning will tend revise to a lower level-k

in a dynamic setting, leading to persistence of low-level reasoning.

In the general case, with κ > 0, low levels of reasoning are persistent in

the face of adverse shocks coupled with forward guidance. This is the result

of competing tensions. For our calibrations, a negative shock coupled with

forward guidance results in forecasts that are non-monotonic in k. Consider

inflation forecasts Ek
0π1 at the time of the shock and for different values of

k. At low level-k, both the shock and policy have small contemporaneous

effects because agents do not fully consider the potential persistence of the

shock nor future policy changes. Increasing k at first generates pessimism as

the negative impact of the persistent shock dominates the positive impact

of future policy. For sufficiently high k future policy is more salient and can

dominate the pessimism. Thus some low level-k forecasts and some high

level-k forecasts generate similar predictions, which removes the incentive

32



Unified Model

under the replicator dynamics for low-level reasoners to revise upward.

Suppose the economy the economy unexpectedly enters state S at the

beginning of period t = 0. Figure 3 illustrates the attendant non-monotonicity

in (reasoning level) k of forecasts of period 1 inflation. We use the Eggerts-

son and Woodford (2003) calibration: ξ = 0.99, κ = 0.2, σ = 0.5, δ = 0.1,

and rN = 0.01, with a large shock of rS = −0.01. The level-0 forecast is

ax = aπ = 0. The three solid lines are the same in each panel and show the

level-k inflation forecasts for the three different forward guidance promises

ν. The forward guidance promise ν∗ corresponds to optimal promise under

RE when ψx equals the welfare theoretic value of 0.00254.25 The solid lines

clearly illustrate the non-monotonicity (the same is true for the output gap

forecast). Level-500 is approximately RE.

Figure 3: Non-monotonicity of level-k forecasts
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Notes: Each panel shows successive level-k deductions in the NK model at the ZLB in
the shock state with differing forward guidance promises: ν. Dashed lines indicate the
actual inflation outcome with level-0 beliefs at steady state and different proportions of
level-k reasoners: uniform [0, 499], [0, 3], matched to distribution from round 20 from
T3×A2 and A3 experiment, and level-0 and REE each 1/2. Comparisons between solid
and dashed line provide the counterfactual that agents consider when revising strategies.

The four panels in Figure 3 differ in the assumed distribution of level-k

25The welfare theoretic value is κ/θ, where θ is the elasticity of demand with respect
to price faced by the monopolistically competitive firms in the economy.
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types which generate different values of inflation in period t = 1. These

values are indicated by the dashed lines. For each ν, the level-k forecast

with lowest absolute error is indicated by the large dot. The top panels

show the results for uniform distributions of level-k types: [0, 499] (on

left) and [0, 3] (on right). The left bottom panel shows the results for the

distribution of types observed in our T3×A2 and A3 experiments for the

first announcement with proportions of level-0, 1, 2, 3, and REE forecasts

of 25.4%, 56.8%, 4.2%, 1.7%, and 11.9%, respectively. In the last panel a

weight 1/2 is placed on level-0 and a weight of 1/2 is placed on level-500.

In all four cases the optimal level-k is smaller than the largest k in use,

and for some larger forward guidance promises (smaller ν) there are double

crossing of level-k forecasts and realized inflation. This shows that low and

high level-k forecasts can produce similarly small forecast errors. Thus low

level-k strategies do not lose many users even when the optimal k is higher.

Figure 4 compares inflation and output dynamics under RE (dashed

black) and under unified dynamics (solid black), using the same the initial

distribution of level-k types as the bottom left panel of Figure 3. We set the

gain to ϕ = 0.2 and the replicator parameter to α = 500: this corresponds

to a loss of nearly 90% of the users of a level-k strategy in a single period

if the absolute forecast error for inflation is 1%. By period 10, few use

the poorly-performing RE forecast; however, because low-level-k forecasts

remain good, the use of level-0, 1, 2, and 3 forecasts is still above 30%.

In the stagnation regime, unified dynamics leads to inflation that is

below the RE value, and the discrepancy increases over time. Output

is initially higher than under RE because of the myopia of low level-k

reasoners. However, over time it too deteriorates through a combination of

increasingly pessimistic level-k forecasts as k rises and because of revisions

to the level-0 forecasts (red dotted line). In state F inflation increases over

time, but remains below RE, and the output gap follows a similar pattern.

6.4 Discussion

We conclude with observations made by Farhi and Werning (2019), who

write,

We close with the following general observations regarding level-k

modeling. First, our analysis can either be interpreted as represent-
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Figure 4: Forward guidance under unified dynamics simulation
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Notes: Unified dynamics (solid black) compared to RE (dashed black) for a realized
stagnation shock of 10 quarters and a realized zero interest rate in state F of four quarters.
The red dashed line shows the path of level-0 beliefs. Parameters given in the text.

ing the impact effect of interest rate changes or the dynamic effects

in a world in which agents do not respond when they see realiza-

tions that differ from what they expect. Modeling how level-k agents

react when they see unexpected realizations would require some hy-

brid of level-k reasoning and learning that is beyond the scope of

the current paper, but is an interesting area for future research.

Our model is naturally viewed as a hybrid of level-k reasoning and learn-

ing. Our agents do respond when they see realizations different than they

expected. They respond through two channels: adjusting level-0 forecasts in

light of new data, and by revising reasoning levels in light of performance.

In the event of a stagnation shock, these channels induce a long period of

low-level reasoning, mitigating the impact of forward guidance.

7 Related Literature

In addition to the level-k literature and the cognitive hierarchy approaches

discussed in the Introduction, the unified model draws on several liter-

atures. The eductive approach introduced in Guesnerie (1992) examines

the inherent difficulty for rational agents, who fully know the structural

model, to coordinate on REE. This coordination requires extremely strong

common knowledge assumptions, not only of the structure but also of the

rationality of other agents; even then coordination on an REE is only pos-

sible if the structure satisfies certain “eductive stability” conditions. These

are closely related to the iterative expectational stability conditions de-
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veloped in Evans (1985), a connection developed explicitly in Evans and

Guesnerie (1993). Our level-k forecasts are obtained analogously, starting

from level-0 forecasts, using iterations based on the structure.

Our level-0 learning is based on the adaptive learning literature devel-

oped in Bray and Savin (1986), Marcet and Sargent (1989), Evans (1989)

and Evans and Honkapohja (2001). AL is a versatile technique that has

been applied in both nonexperimental and experimental settings. For a

wide range of models, AL can converge over time to REE.26 Because AL

does not require knowledge of the model’s structural parameters, it provides

a natural level-0 benchmark for deriving level-k forecasts.27

The behavioral heterogeneous expectations literature, e.g. Brock and

Hommes (1997), De Grauwe (2012) and Hommes (2013), considers ex ante

homogeneous agents selecting from a menu of forecast rules, resulting in

ex post heterogeneity of forecasts. In our setting the menu is the full set of

level-k forecasts, with agents’ choices based on recent forecast performance.

Our model shares elements with the Reflective Equilibrium notion pro-

posed by Garćıa-Schmidt and Woodford (2019), which features a continu-

ous version of level-k forecasts parameterized by a finite “degree of reflec-

tion” n, viewed as the mean level of reasoning. RE is obtained as n→ ∞ ,

but they argue a Reflective Equilibrium with a finite degree of reflection

is more realistic. As they note, this approach is similar to the “calculation

equilibrium” analyzed in Evans and Ramey (1992), in which agents revise

expectations of future paths recursively, with increased calculation costs

from higher levels of recursion balanced against reduced forecast errors.

For simplicity we do not include these costs.

Our LtFE shares important elements with the laboratory experiments

of Fehr and Tyran (2008), Heemeijer, Hommes, Sonnemans, and Tuinstra

(2009), and Bao, Hommes, Sonnemans, and Tuinstra (2012). Each study

tests for convergence to an REE in an LtFE setting. Bao, Hommes, Sonne-

mans, and Tuinstra (2012) study laboratory subjects’ forecasts in settings

with structural change similar to our announced structural change treat-

ments. However in that paper subjects are not given detailed structure of

26Sargent (2008) argues REE can be viewed as emergent outcomes from learning.
27Evans, Guesnerie, and McGough (2018) show that though the RBC model is not

eductively stable, it is stable under AL.
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the model, and level-k forecasts are not studied. Using a pricing game,

Heemeijer, Hommes, Sonnemans, and Tuinstra (2009) find that negative

feedback engenders stability while positive feedback can lead to endoge-

neous fluctuations.28 Fehr and Tyran (2008) study speed of convergence in

a pricing game with different feedback treatments, which they refer to as

strategic substitutability and strategic complementarity.

Our work is also related to the experiments of Khaw, Stevens, and

Woodford (2019) and Anufriev, Duffy, and Panchenko (2022), which both

consider forecasting tasks that nest a repeated beauty contest. Khaw,

Stevens, and Woodford (2019) study forecasting with partial information

and stochastic structural change following a Markov process, which is sim-

ilar to our announced structural change treatments. They tests for level-k

reasoning among participants and observe heterogeneous forecasts with dif-

ferent depths of reasoning, consistent with our findings.

In Anufriev, Duffy, and Panchenko (2022), subjects forecast two vari-

ables whose realizations are dependent on each other. They argue that

both AL and level-k reasoning are necessary to fit their data. By contrast,

our unified approach provides sharp predictions about revisions to depth of

reasoning and the impact of anticipated events, and our experiment tested

these predictions.

8 Conclusion

The union of behavioral heterogeneity, adaptive learning, and level-k rea-

soning brings together three assumptions that enjoy wide experimental

support. We show how evolving level-k beliefs naturally fit common forms

of bounded rationality studied in macroeconomic environments. One of our

key findings is the persistence of low-level reasoners in environments with

repeated structural change. This finding supports macroeconomic models

that rely on low levels of reasoning to moderate general equilibrium effects,

including prominent applications to the forward guidance puzzle.

The unified approach has a number of features that we find appealing.

It naturally balances adaptive and eductive approaches to expectations

formation by providing agents with some structural knowledge while also

28See Sutan and Willinger (2009) for level-k experiments with negative feedback.
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assuming they update beliefs over time as new data become available; it

is amenable to theoretical analysis and yields both intuitive and surprising

results; it is shown to be supported in experiments; and it is easily and

naturally adapted to many general economic models.
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Arifovic, J., S. Schmitt-Grohé, and M. Uribe (2018): “Learning to live in a
liquidity trap,” Journal of Economic Dynamics and Control, 89, 120–136.

Bao, T., and J. Duffy (2016): “Adaptive versus eductive learning: Theory and
evidence,” European Economic Review, 83, 64–89.

Bao, T., C. Hommes, J. Sonnemans, and J. Tuinstra (2012): “Individual expec-
tations, limited rationality and aggregate outcomes,” Journal of Economic Dynamics
and Control, 36(8), 1101–1120.

Bianchi, F., M. Lettau, and S. C. Ludvigson (2022): “Monetary policy and asset
valuation,” The Journal of Finance, 77(2), 967–1017.

Bianchi, F., and L. Melosi (2014): “Dormant shocks and fiscal virtue,” NBER
Macroeconomics Annual, 28(1), 1–46.

Bilbiie, F. O. (2019): “Optimal forward guidance,” American Economic Journal:
Macroeconomics, 11(4), 310–345.

Bosch-Domenech, A., J. G. Montalvo, R. Nagel, and A. Satorra (2002):
“One, two,(three), infinity,...: Newspaper and lab beauty-contest experiments,”
American Economic Review, 92(5), 1687–1701.

Branch, W. A., and B. McGough (2008): “Replicator dynamics in a cobweb model
with rationally heterogeneous expectations,” Journal of Economic Behavior & Orga-
nization, 65(2), 224–244.

Bray, M. M., and N. E. Savin (1986): “Rational expectations equilibria, learning,
and model specification,” Econometrica, 54, 1129–1160.

Brock, W. A., and C. H. Hommes (1997): “A rational route to randomness,”
Econometrica, pp. 1059–1095.

Camerer, C. F., T.-H. Ho, and J.-K. Chong (2004): “A cognitive hierarchy model
of games,” The Quarterly Journal of Economics, 119(3), 861–898.

Chen, D. L., M. Schonger, and C. Wickens (2016): “oTree—An open-source
platform for laboratory, online, and field experiments,” Journal of Behavioral and
Experimental Finance, 9, 88–97.

Costa-Gomes, M. A., and V. P. Crawford (2006): “Cognition and behavior in
two-person guessing games: An experimental study,” American Economic Review,
96(5), 1737–1768.

De Grauwe, P. (2012): Lectures on behavioral macroeconomics. Princeton University
Press.

Duffy, J., and R. Nagel (1997): “On the robustness of behaviour in experimental
‘beauty contest’games,” Economic Journal, 107(445), 1684–1700.

38



Unified Model

Eggertsson, G. B., and M. Woodford (2003): “Zero bound on interest rates and
optimal monetary policy,” Brookings papers on economic activity, 2003(1), 139–233.

Evans, G. W. (1985): “Expectational Stability and the Multiple Equilibria Problem
in Linear Rational Expectations Models,” The Quarterly Journal of Economics, 100,
1217–1233.

(1989): “The Fragility of Sunspots and Bubbles,” Journal of Monetary Eco-
nomics, 23, 297–317.

Evans, G. W., and R. Guesnerie (1993): “Rationalizability, strong rationality, and
expectational stability,” Games and Economic Behavior, 5(4), 632–646.

Evans, G. W., R. Guesnerie, and B. McGough (2018): “Eductive Stability in
Real Business Cycle Models,” Economic Journal, 129(618), 821–852.

Evans, G. W., and S. Honkapohja (2001): Learning and expectations in macroeco-
nomics. Princeton University Press.

Evans, G. W., S. Honkapohja, and K. Mitra (2009): “Anticipated fiscal policy
and adaptive learning,” Journal of Monetary Economics, 56(7), 930–953.

Evans, G. W., and B. McGough (2020): “Adaptive Learning in Macroe-
conomics,” Oxford Research Encyclopedia of Economics and Finance,
https://doi.org/10.1093/acrefore/9780190625979.013.508.

(2021): “Agent-level Adaptive Learning,” Oxford Research Encyclopedia of
Economics and Finance, https://doi.org/10.1093/acrefore/9780190625979.013.620.

Evans, G. W., and G. Ramey (1992): “Expectation Calculation and Macroeconomic
Dynamics,” American Economic Review, 82, 207–224.

Farhi, E., and I. Werning (2019): “Monetary policy, bounded rationality, and in-
complete markets,” American Economic Review, 109(11), 3887–3928.

Fehr, E., and J.-R. Tyran (2008): “Limited rationality and strategic interaction:
the impact of the strategic environment on nominal inertia,” Econometrica, 76(2),
353–394.

Gaballo, G. (2013): “Eductive learning and the rationalizability of oligopoly games,”
Economics Letters, 120(3), 401–404.

Gali, J., and M. Gertler (1999): “Inflation dynamics: A structural econometric
analysis,” Journal of Monetary Economics, 44(2), 195–222.

Garćıa-Schmidt, M., and M. Woodford (2019): “Are low interest rates deflation-
ary? A paradox of perfect-foresight analysis,” American Economic Review, 109(1),
86–120.

Gibbs, C. G., and M. Kulish (2017): “Disinflations in a model of imperfectly an-
chored expectations,” European Economic Review, 100, 157–174.

Goy, G., C. Hommes, and K. Mavromatis (2020): “Forward guidance and the
role of central bank credibility under heterogeneous beliefs,” Journal of Economic
Behavior & Organization.

Greiner, B. (2015): “Subject Pool Recruitment Procedures: Organizing Experiments
with ORSEE,” Journal of the Economic Science Association, 1(1), 114–125.

Guesnerie, R. (1992): “An Exploration of the Eductive Justifications of the Rational-
Expectations Hypothesis,” American Economic Review, 82(5), 1254–1278.

(2002): “Anchoring economic predictions in common knowledge,” Economet-
rica, 70(2), 439–480.

Heemeijer, P., C. Hommes, J. Sonnemans, and J. Tuinstra (2009): “Price sta-
bility and volatility in markets with positive and negative expectations feedback:
An experimental investigation,” Journal of Economic Dynamics and Control, 33(5),
1052–1072.

Ho, T.-H., C. Camerer, and K. Weigelt (1998): “Iterated dominance and iterated
best response in experimental” p-beauty contests”,” American Economic Review,
88(4), 947–969.

39



Unified Model

Hommes, C. (2011): “The heterogeneous expectations hypothesis: Some evidence from
the lab,” Journal of Economic Dynamics and Control, 35(1), 1–24.

(2013): Behavioral rationality and heterogeneous expectations in complex eco-
nomic systems. Cambridge University Press.

Hommes, C., J. Sonnemans, J. Tuinstra, and H. Van De Velden (2007): “Learn-
ing in cobweb experiments,” Macroeconomic Dynamics, 11(S1), 8–33.

Jackson, A. L. (2005): “Disinflationary Boom Reversion,” Macroeconomic Dynamics,
9(4), 489–515.

Kahneman, D. (2011): Thinking fast and slow. Farrar, Straus and Giroux, New York.
Khaw, M. W., L. Stevens, and M. Woodford (2017): “Discrete adjustment to

a changing environment: Experimental evidence,” Journal of Monetary Economics,
91, 88–103.

(2019): “Adjustment dynamics during a strategic estimation task,” ”Working
paper”.

Kryvtsov, O., and L. Petersen (2021): “Central bank communication that works:
Lessons from lab experiments,” Journal of Monetary Economics, 117, 760–780.

Lucas, Jr., R. E. (1972): “Expectations and the Neutrality of Money,” Journal of
Economic Theory, 4, 103–124.

Marcet, A., and T. J. Sargent (1989): “Convergence of least squares learning
mechanisms in self-referential linear stochastic models,” Journal of Economic theory,
48(2), 337–368.

Mauersberger, F., and R. Nagel (2018): “Levels of reasoning in Keynesian Beauty
Contests: a generative framework,” in Handbook of computational economics, vol. 4,
pp. 541–634. Elsevier.

Mokhtarzadeh, F., and L. Petersen (2021): “Coordinating expectations through
central bank projections,” Experimental Economics, 24, 883–918.

Muth, J. F. (1961): “Rational Expectations and the Theory of Price Movements,”
Econometrica, 29, 315–335.

Nagel, R. (1995): “Unraveling in guessing games: An experimental study,” American
Economic Review, 85(5), 1313–1326.

Nagel, R., C. Bühren, and B. Frank (2017): “Inspired and inspiring: Hervé
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