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1 Introduction

The rational expectations (RE) approach to expectation formation is subject to two lines of cri-
tique: it typically presumes an unrealistic degree of information about the economy; and, since in
macroeconomic contexts it is comes as part of a rational expectations equilibrium (REE), it begs
a mechanism by which the equilibrium will be attained. This last point is particularly salient in
models with multiple REE.

One natural reaction to this critique is to replace RE with plausible behavioral rules, which
may, of course, lead to deviations from RE. A prominent example is adaptive learning (AL), which
can be viewed as a bounded rationality approach that attempts to keep close to the spirit of RE in
that agents should not repeatedly make systematic forecasting errors. Learning agents are modeled
as following an adaptive process for revising forecast rules that can over time eliminate predictable
mistakes, and possibly lead to convergence, appropriately defined, to RE. Sargent (2008) calls
this an adaptive evolutionary approach, and a widely used implementation is to model agents as
statisticians or econometricians who update their forecast rules over time in accordance with (re-
cursive) least-squares learning.1 This “adaptive learning” (AL) approach has been extensively used
in macroeconomics in theoretical, empirical and in policy-oriented settings. For a recent survey
see Evans and McGough (2020).

There are other adaptive evolutionary models, with the potential to converge to RE, that rely
on non-econometric boundedly rational approaches.2 A particularly prominent example is the
“genetic-algorithm learning” or “social learning” (SL) approach pioneered by Jasmina Arifovic.
SL emphasizes heterogeneity of expectations across agents. Early papers include applications
to cobweb, hyperinflation, exchange-rate and growth transition models.3 Recent applications to
questions concerning monetary policy include Arifovic, Bullard, and Kostyshyna (2013), Arifovic,
Schmitt-Grohe, and Uribe (2018), and Arifovic, Grimaud, Salle, and Vermandel (2020). Major at-
tractions of SL are that it embraces the heterogeneity of expectations that is so evident in survey
data, and that the mechanisms by which forecasts adapt can be interpreted as experimentation, in-
terchange between agents, and an evolutionary direction toward more successful forecasting rules.
The potential importance of social learning following large unanticipated shocks has recently been
emphasized by Bullard (2023), who argues that social learning dynamics, which can amplify the
inertia of beliefs, provide an explanation for recent rapid recoveries following severe downturns,
e.g. the Great Recession and the Covid Pandemic.

While SL has these major benefits, a disadvantage to date of SL is that there are few, if any,
theoretical results on its asymptotic properties. By contrast, there is a large and well-established
literature on the asymptotic stability properties of REE, and more generally restricted perceptions

1See, for example, Bray and Savin (1986), Marcet and Sargent (1989), Evans (1989), Woodford (1990) and Evans
and Honkapohja (2001). See also Evans (1985).

2For an early survey of alternative approaches see Sargent (1993).
3Arifovic (1994), Arifovic (1995), Arifovic (1996) and Arifovic, Bullard, and Duffy (1997).
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equilibria (RPE), under adaptive learning.4 A particularly prominent estimation procedure used
in this literature is recursive least-squares learning: see e.g. Bray and Savin (1986), Marcet and
Sargent (1989) and Evans and Honkapohja (2001). Convergence results can be obtained using the
theory of stochastic recursive algorithms (SRA), introduced by Robbins and Monro (1951), and
generalized by e.g. Ljung (1977), Kushner and Clark (1978) and Benveniste, Metivier, and Priouret
(1990).

Asymptotic analysis of SRAs is commonly conducted using the ODE method: See Benveniste,
Metivier, and Priouret (1990), Chapter 2, for a general introduction. This method assigns to the
SRA an ordinary differential equation – sometimes referred to in the AL literature as the mean
dynamics – that locally approximates the expected trajectory of the algorithm. Using these mean
dynamics, Evans and Honkapohja (2001) developed the E-stability principle, which states that the
stability of a central and easily computed component of the mean dynamics governs local stability
of an REE/RPE under AL and closely related learning rules. This principle has been validated
even in cases not covered by standard SRA assumptions. Clearly it would be desirable to develop
a theoretical connection between SL and E-stabilty.

In addition to lacking a theoretical basis for stability analysis, computational results in partic-
ular models suggest discrepancies between the stability properties of SL and AL. This is of con-
siderable importance theoretically, but also, as illustrated in Section 4.2, there can be significant
policy implications. A prominent example of the importance of stability under learning concerns
contemporaneous “Taylor-type” interest-rate rules used by Central Banks. For the benchmark
New Keynesian model, Bullard and Mitra (2002) showed that E-stability of the REE requires ac-
tive monetary policy: passive policies lead to instability. However, in the same model, and for
the same calibration, Arifovic, Bullard, and Kostyshyna (2013) provided striking computational
evidence that under SL the RE steady state is stable also under passive policy. This provides an
example of an REE that is not E-stable but that appears clearly to be stable under SL. This example
calls into question the generality of the E-stability principle, and it raises a further question: what
features of SL generate apparent stability of an REE that is unstable under AL?

The current paper makes progress on these issues. To do so we construct a univariate the-
oretical laboratory in which we can examine SL and compare it to AL. A major contribution of
our paper is that we represent SL as an SRA amenable to the ODE method. This can be viewed
as providing a proof of concept that social learning can be analyzed with the same tools as used
to study adaptive learning. Within our framework, and with a few simplifying assumptions, we
derive the model’s mean dynamics. We find the asymptotic stability properties of SL and AL are
the same, and both are governed by the E-stability principle. How can these theoretical results be
reconciled with the simulation results?

We show that under SL the instability can be exceedingly slow to emerge, a phenomenon we
call “stable instability.” The other main contribution of this paper is to track down the source,

4RPE is a generalization of REE in which forecast rules are optimized within a restricted class under consideration.
See Evans and Honkapohja (2001), Branch (2006), and Evans and McGough (2020).
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in these cases, of the very different simulation results of SL and AL, over realistic horizons, in
the case of stable instability. We show that the reasons for the different results lie in the fitness
measure used under SL in the “tournament” stage, and the “gain sequences” used under AL to
update forecasts. To demonstrate this we develop a modified AL that mimics SL tournament play,
and a modified SL using a fitness measure that mimics standard AL updating.

We examine the policy implications of these results within the standard bivariate New Keyne-
sian model studied by Arifovic, Bullard, and Kostyshyna (2013). In line with the simulation results
of Arifovic, Bullard, and Kostyshyna (2013) the (minimum state variable) REE exhibits stable in-
stability: instability under SL cannot be detected even in extremely long simulations. However,
SL also has surprising implications for policy change. Specifically, suppose the central bank (CB)
has an inflation target π∗ = 5%, that the CB follows a Taylor-type interest rate rule based on that
target, and that the economy is initially in a steady state with π = π∗ = 5%. Suppose policymakers
then decide to reduce their target inflation rate to π∗ = 0, which of course implies a corresponding
reduction in the steady state nominal interest rate i. Assuming an active interest-rate rule, under
AL the implications are conventional: the CB increases interest rates because inflation is above the
new zero inflation target. This leads to higher ex-ante real interest rates r, which reduces output
and inflation en route to the new steady state.

Under SL the implications of the reduction in the π∗ target are unusual and depend on whether
active or passive policy is followed. Under an active policy rule with SL there is a persistent drop
in output and the reduction in inflation is imperceptibly small. If instead a passive policy rule is
followed with SL, there is a persistent increase in output, while again changes in the inflation rate
are imperceptibly small. Finally, if we consider the modified SL model, using a fitness measure
more aligned to AL, the results under active policy are quite similar to the AL results.

The paper is organized as follows. Section 2 reviews and distinguishes the standard adaptive
learning and social learning frameworks, and covers the E-stability principle. Section 3 analyzes
AL and SL in a univariate laboratory. The E-stability is shown to govern asymptotic dynamics
of both learning mechanisms, and additional results on constant gain dynamics are provided. The
concept of stable instability is introduced, and examined via numerical analysis of modified learn-
ing algorithms. Section 4 considers the policy implications of stable instability in a New Keynesian
framework. Section 5 concludes.

2 Review of adaptive learning and social learning

We consider learning dynamics in linear macro models featuring expectational feedback in the
form of a dependence on average forecasts across a finite number of agents. For the purposes of
discussion, we take our model to have the form

yt = βM−1
M

∑
i=1

Et(i)yt+1 + vt , (1)
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though nothing in principle precludes the inclusion of lags. Here M is the number of agents (taken
to be even for convenience), yt ∈ Rn is the endogenous state, β is an n× n matrix, and vt ∈ Rn

is an exogenous, zero-mean, iid process, though our results can be easily extended to allow for
serial correlation, provided stationarity is imposed. Finally, Et(i)yt+1 is the forecast of yt+1 made
by agent i in period t. If agents hold rational expectations then there is a unique minimal state
variable (MSV) solution, which takes the form yt = vt .

2.1 Adaptive learning

In the MSV solution, under RE Et(i)yt+1 = 0 for all agents i and all times t, though the rational
expectations hypothesis is silent on how agents came to coordinate on this forecast. By contrast,
the adaptive learning literature adopts the view that agents estimate their forecast models, updating
them over time as new data become available. In this way, the model’s MSV solution may (or may
not) identify a plausible emergent outcome for the economy.

To provide an explicit implementation of adaptive learning, we assume that each boundedly
rational agent uses a forecasting model that is consistent with the MSV solution, i.e. they regress on
a constant. Notationally, for 1 ≤ k ≤ n we let φkt(i) represent the forecast model used by agent i in
period t to forecast ykt+1, so that Et(i)ykt+1 = φkt(i). The column vector φt(i) = (φ1t(i), . . . ,φnt(i))

⊺

will sometimes be referred to as the period t perceived law of motion (PLM) of agent i. Note in
particular that φt(i) ∈ Rn identifies agent i’s time t beliefs.

Agent i uses recursive least squares (RLS) to update beliefs, which amounts to computing the
(possibly weighted) sample mean:

φt+1(i) = φt(i)+ γt+1 (yt −φt(i)) . (2)

Here γt is the gain sequence, which measures the weight placed on new information.5 In general,
γt can be taken as decreasing to zero or as a positive constant. In this latter case, the algorithm is
referred to as constant gain learning (CGL). With γt = t−1, φt(i) is the usual sample mean.

The agents’ forecast models φt(i) determine the actual law of motion (ALM) for yt :

yt = βM−1
M

∑
i=1

φt(i)+ vt . (3)

Equations (2) and (3) can be combined to determine a stochastic recursive system in the vector
φt = (φt(i))M

i=1 ∈ Rn·M. The stability question is: under what conditions do the φt(i) converge (in
an appropriate sense) to zero?

5Agent-specific gains have also been examined (see Evans, Honkapohja, and Marimon (2001)), and would not play
a prominent role in our analysis, so for simplicity we assume all agents the same gain.
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2.2 Social learning

Under adaptive learning, agents modify their beliefs by incrementally accounting for the most
recent forecast error. Social learning also uses forecast performance as the measure of success,
but agents’ beliefs are modified over time in a manner analogous to the evolution of genes – via
mixing, mutation, and natural selection.

To understand social learning dynamics, it is helpful to lean heavily on the biology metaphor:
the period t PLMs φkt(i) are genes, with the PLMs of a given agent, φt(i), identifying a period
t chromosome. Somewhat awkwardly, the population of period t chromosomes φt comprises the
gene pool.

The gene pool evolves over time via cross-over, mutation, and tournament selection (in that
order), as described in detail below. It is useful to view each of these mechanisms as an operator
acting on the gene pool.

1. Crossover. Informally, agents are randomly paired, and pairs swap some of their genes.
Formally, let x be uniformly distributed over {0,1}. Each period M/2 pairs of chromosomes
are randomly selected without replacement (this is why we assume there is an even number
of agents). With probability pc, pairs engage in crossover, which means they swap gene k
with probability 1/2. That is, a sample {x1, . . . ,xn} of independent draws of x is obtained,
and the matched agents swap their kth-PLMs provided xk = 1. Thus if, in period t, agents i
and j engage in crossover, and if xk = 1, then φ̂kt( j) = φkt(i) and φ̂kt(i) = φkt( j), where the
hat identifies the modified chromosome.

2. Mutation. Informally, each chromosome mutates with probability pm > 0. Formally, let
{εt(i)}M

i=1, with εt(i) = (ε1t(i), . . . ,εnt(i)) ∈Rn, be M independent draws from a zero-mean,
n-dimensional distribution. If chromosome i mutates then φ̂t(i) = φt(i)+εt(i). Note that the
mutations εkt(i) may be correlated across genes, but not across chromosomes. We denote
the mutation operator by µ .

3. Tournament Selection. Informally, the forecast performances of genes associated with ran-
domly matched chromosomes are compared, resulting in a new chromosome made up of the
superior genes. Forecast performance is determined by the average forecast error over the
entire history. Formally, letting F denote the measure of PLM forecast performance, we set

F
(
φkt(i),yt)=− 1

t +1

t

∑
m=0

(ykm −φkt(i))2.

Here yt is the history of y and ym = (y1m, . . . ,ynm) is the m-th period realization of y. Each
period, M pairs of chromosomes are randomly selected with replacement. There are then
two ways to proceed. Under fine competition, a new chromosome is created by selecting the
genes of highest fitness. Thus if chromosomes i and j are paired and if F

(
φkt(i)

)
>F

(
φkt( j)

)
6



then the k-th gene of the new chromosome is φkt(i). Under coarse competition, forecast
performance is measured at the chromosome level by taking a weighted average of fitness
across genes. In this case, the new chromosome is a copy of the chromosome with highest
average fitness. We denote the tournament selection operator by τ .

Note that the period t +1 gene pool is determined by M independent draws from the evolved
(via crossover and mutation) period t gene pool. In particular, the genes comprising a given agent’s
period t +1 chromosome depend on the period t gene pool, but not directly on the agent’s period t
chromosome. Further, under fine competition, the tournament selection operator produces a gene
pool that does not depend on the affiliation of genes and chromosomes. It follows that, in linear
models, fine competition makes crossover irrelevant.

Assuming, for concreteness, that we adopt the fine competition protocol, the model’s dynamics
under social learning are given by (3) and

φt+1 = τ
(
µ (φt) ,yt) . (4)

The stability question is the same as in the adaptive learning case: under what conditions do the
φt(i) converge (in an appropriate sense) to zero? Under adaptive learning, and for appropriate
gain sequences and model calibrations, almost sure convergence of the agents’ PLMs to the REE
obtains. Here, mutation precludes this possibility: the most that could be hoped for is convergence
of the genes to an ergodic distribution centered at the REE.6

2.3 The E-stability Principle

Assume for the moment that agents are adaptive learners with homogeneous beliefs φ . In this case,
the actual law of motion of the economy is

yt = βφ + vt ≡ T (φ)+ vt .

The T-map, φ → βφ , can be interpreted as mapping the PLM to the ALM. At a fixed point of this
map the PLM and ALM align, thus identifying the REE.

To assess whether we can expect adaptive learning agents to eventually coordinate their expec-
tations on the REE, the learning literature advises analysis of the system of differential equations

φ̇ = T (φ)−φ . (5)

This simple dynamic system, sometimes referred to as stylized adaptive learning, dictates that
beliefs evolve in the direction determined by a type of forecast error – the discrepancy between

6Arifovic, Bullard, and Kostyshyna (2013) assume that mutation variance decreases over time in order to allow for
the possibility of a.s. convergence. In Section 4 we adopt their convention.
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the PLM and the ALM, appropriately defined. Note that the rest point of this system characterizes
the REE. If the rest point is Lyapunov stable then the REE is said to be E-stable, otherwise it
is E-unstable. The E-stability Principle says that E-stable REE are learnable, i.e. stable under
least-squares and related learning algorithms. The converse also holds – E-unstable REE are not
learnable.

The E-stability principle is just that – a principle. Formally establishing that it holds for a
given REE in a given model requires work – indeed, the relationship between (5) and adaptive
learning dynamics is deep and technical, involving formalization of the ODE method. On the other
hand, no important counter-examples to the principle are known, and the expedience it affords is
considerable: simply compute the eigenvalues of DT at the rest point: if the real parts are less than
one the REE is E-stable; if at least one eigenvalue has real part greater than one then the REE is
E-unstable.

3 Learning in a univariate laboratory

In this section we examine learning dynamics, both adaptive and social, in the simplest possible
environment: the univariate version of model of (1). In this world, chromosomes are genes, coarse-
ness is fineness, and PLMs are real numbers. For notational simplicity, we let ye

it be the PLM of
agent i, that is, Et(i)yt+1 ≡ ye

it . Additionally we set ȳe
t = M−1 ∑M

i=1 ye
it . The economy’s dynamics

are now given by yt = β ȳe
t + vt .

3.1 E-stability and adaptive learning

First we assess E-stability. Let ye be the vector of agents’ PLMs, with ye
i being the PLM used by

agent i. The actual law of motion can be written

yt = βM−1 ·1 ⊤
M · ye

t + vt , (6)

where 1M ∈ RM is a column vector of ones. The induced T-map is

T (ye) = βM−1
(

1⊤M ⊗1M

)
ye.

Thus DT has an eigenvalue β associated to the eigenvector 1M, and an M−1 dimensional kernel.
It follows that the REE is E-stable if β < 1 and E-unstable if β > 1, as expected. In particular, by
the E-stability Principle, β > 1 should preclude the REE as a long run outcome when the model is
populated with adaptive learners.

8



3.1.1 Adaptive learning with decreasing gain

To examine this last point formally, assume agents update their beliefs using recursive least squares:

ye
it+1 = ye

it + γt (yt − ye
it) . (7)

Equation (7) can be combined with yt = β ȳe
t + vt to determine a dynamic system amenable to

Ljung’s theory of stochastic recursive algorithms. We have the following result, which is an in-
stance of the E-stability principle in action:7

Theorem 1 (E-stability principle) Assume agents update beliefs via RLS, and assume ∑γ2
t < ∞

and ∑γt = ∞.

1. If β < 1 then ye
it → 0 with probability one.

2. If β > 1 then ye
it → 0 with probability zero.

3.1.2 Adaptive learning with constant gain

Social learning involves mutation – each period, each agent’s beliefs are potentially subjected to
perturbation. For comparison purposes, then, it is perhaps more natural to assume agents use a
constant-gain algorithm: γ ∈ (0,1), and usually taken to be small. For asymptotic results, the
theory of stochastic recursive algorithms can be applied in this case as well, but to get a feel
for transition dynamics, and thus to better understand how quickly we might expect instability to
materialize when β > 1, it is convenient to assume vt ∼ N (0,σ2

v ) and to focus attention on the
positive expectational-feedback case β > 0.

In the constant gain case, we may stack the recursions (7) and use the ALM to obtain a recur-
sion for the expectations vector:

ye
t =

[
(1− γ)IM + γM−1

β

(
1⊤M ⊗1M

)]
ye

t−1 + γ1Mvt . (8)

We see that ye
t may be viewed as a VAR(1) process, which is stationary provided that the matrix

corresponding to the term in the square brackets has eigenvalues inside the unit circle. A simple
computation shows that the eigenvalues of this matrix comprise

λ̄ ≡ 1+(β −1)γ , and M−1 copies of 1− γ.

Tracking beliefs heterogeneity is also of interest. To this end, define the beliefs dispersion ∆e
t at

time t as
∆e

t = M−1/2
√

∑ i

(
ye

it − ȳe
t
)2
,

where ȳe
t = M−11⊤M · ye

t is the cross-sectional mean of beliefs. We have the follow result:

7See Evans and Honkapohja (1996).
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Proposition 1 Given constant gain γ , the asymptotics of (8) are characterized as follows:

1. Beliefs dispersion converges to zero almost surely: ∆e
t

a.s.−−→ 0.

2. If β ∈ (0,1) then

(a) Beliefs ye
it are asymptotically normally distributed around zero.

(b) The state yt converses weakly to a normal distribution: yt
D−→ N

(
0,(1+ξ )σ2

v
)

with

ξ =
(
1− λ̄ 2)−1

β 2γ2, where λ̄ ≡ 1+(β −1)γ .

3. If β > 1 then yt is explosive.

All proofs are in the Appendix. Item 2 can be made sharper. Since ξ =O(γ), we may conclude
that for small γ the asymptotic distribution of the state under adaptive learning well-approximates
the REE; further, conditional on initial beliefs, Eyt converges to zero at rate λ̄ . See proof in the
Appendix for details. Concerning item 3, by explosive we mean not uniformly bounded almost
surely, and here also a sharper result is available: conditional on initial beliefs, ∥Eye

t ∥, and thus
|yt |, diverge at rate λ̄ .

Note that, by item 1, regardless of β ’s magnitude, the dynamics impart asymptotic homogene-
ity, reflecting that beliefs are adjusted in the direction of a common aggregate even if that aggregate
is explosive. In fact, this result can be sharpened as well, though it is more naturally stated within
the context of Proposition 2: see Corollary 1.

Proposition 1 provides details of the asymptotic behavior of the model under adaptive learning.
Transitional behavior depends on initial beliefs. To broaden our assessment of transition dynamics
we assume that the initial beliefs vector ye

0 ∈ RM is obtained as a random sample of size M drawn
from a normal distribution with zero mean and and finite variance σ2

0 > 0. It is further assumed
that the subsequent realizations of the shock vt are independent of these draws.

Some of the results below are most naturally stated in terms of approximate distributions. We
use the notation x ∼̇ D to indicate that the random variable x is approximately distributed as D ,
where the nature of the approximation is context dependent. The following result characterizes the
time t distributions of the state and of the dispersion of beliefs.

Proposition 2 Let the initial condition ye
0 ∈ RM be obtained as a random sample of size M drawn

from N
(
0,σ2

0
)
. Then, provided M is sufficiently large,

1. yt ∼ N
(
0,Σy

t
)

where Σy
t =

(
β 2σ2

0
M −ξ σ2

v

)
λ̄ 2t +(1+ξ )σ2

v

2. ∆e
t ∼̇ N

(
µ∆e

t ,Σ∆e

t
)

where µ
∆e

t =

√
2M−1

2M

√
M+1

M
(1− γ)t

σ0 ≈ (1− γ)t
σ0, and

Σ∆e

t =
M+1
2M2 (1− γ)2t

σ
2
0 ≈ 1

2M
(1− γ)2t

σ
2
0 .
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Item 2 provides for the following important corollary, referenced above:

Corollary 1 Under the hypotheses of Proposition 2, ∆e
t → 0 a.s. at a geometric rate regardless of

whether the REE is stable under adaptive learning.

Taken together, the above results suggest the following: if initial beliefs are drawn indepen-
dently from a distribution centered at the mean of the REE then

1. The dispersion of beliefs should disappear: each agent’s beliefs is expected to converge to
mean beliefs.

2. If β < 1 then yt should converge at rate 0 < λ̄ < 1 to an ergodic distribution with mean equal
to the mean of the REE.

3. If β > 1 then yt should diverge at rate λ̄ > 1.

4. If β ∈ (1,1+δ ) for small δ > 0 then the divergence of yt should be very slow.

Figure 1 provides a simulation demonstrating some the findings of Propositions 1 and 2 in the
unstable case, with heterogeneous initial beliefs symmetrically spaced about 0.0.8 The blue line
is the time path of mean beliefs; the time path of cross-sectional dispersion of beliefs is measured
by plus/minus two standard deviations and is shown by the red lines. Note that expectations het-
erogeneity disappears quite quickly: the red curves overlay the blue curve by period 200. Also,
the short simulation (left panel) gives the appearance of stability, whereas in the longer simulation
(right panel) instability is evident.

3.2 E-stability and social learning

We turn now to social learning dynamics in our laboratory model. Because the model is univariate,
crossover plays no role. We begin with a simulation, tuned to be roughly consistent with Arifovic,
Bullard, and Kostyshyna (2013) – see Figure 2.9 We consider the unstable case, β = 1.01, and
assume that the economy has been at REE for 100 periods. This latter assumption affects the
fitness assessment by providing an initial history at the REE.

Like Figure 1, in Figure 2 initial beliefs are symmetrically spaced about zero, and the blue
line, which is very nearly zero and is covered by the red lines, is the time path of mean beliefs,
with the red lines identifying two standard deviations. And also like Figure 1, the initial dispersion

8In this subsection we set the standard deviation of the exogenous shock to be small (σv = 0.005) in order to focus
on instability induced by the learning mechanism. When constant gain is used, we set γ = 0.05.

9We set pm = 0.1 and M = 300, though all results are qualitatively similar with M = 30, as in Arifovic, Bullard,
and Kostyshyna (2013). We set the mutation standard deviation σε = 0.005.
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Figure 1. Adaptive learning: instability. Here the blue line is the time
path of mean beliefs, and the red lines identify plus/minus two
standard deviations in the cross-sectional dispersion of beliefs.

of beliefs is quickly eliminated. However, here we see that even after one million periods, there is
no evidence of instability. This apparently conflicts with the expectational instability of the REE
with β = 1.01 and is the matter this paper seeks to address. We refer to the phenomenon as stable
instability.

Figure 2. Social learning: stable instability

The stability analysis of Propositions 1 and 2 exploit the linear learning algorithm induced
by constant gain RLS. More generally, stability results in the adaptive learning literature typically
leverage the theory of stochastic recursive algorithms (SRAs). Interpreted through the lens de-
veloped by Evans and Honkapohja (2001), this theory is commonly applied to dynamic systems
taking the following form:

θt = θt−1 + γtH(θt−1,xt)+ γ
2
t ρt(θt−1,xt), (9)
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where θt ∈ Rn1 is the estimator and xt ∈ Rn2 is the state vector which is assumed to have a con-
ditional distribution depending on xt−1 and θt−1. It is not obvious in general that social learning
dynamics can be interpreted as a stochastic recursive algorithm, i.e. placed in the form (9); and this
provides a possible explanation for Figure 2: maybe SL can be stable even when the REE is not
E-stable.

In our simplified laboratory, and under some additional simplifying assumptions, it turns out
that social learning does present as an SRA. Observe that

F
(
ye

it ,y
t)=−(t +1)−1

t

∑
n=0

(ye
it − yn)

2 =−(t +1)−1
t

∑
n=0

(
(ye

it)
2 −2ye

ityn + y2
n
)

=−
(
(ye

it)
2 −2ye

it(t +1)−1
t

∑
n=0

yn +(t +1)−1
t

∑
n=0

y2
n

)
= 2ye

it ȳt − (ye
it)

2 + terms common across agents. (10)

It follows that we can use 2ye
it ȳt − (ye

it)
2 as our fitness measure. Abusing notation somewhat, we

write τ(ye
t , ȳt) as the tournament selection operator based on this new fitness measure.

Putting it all together results in the following dynamic system:

ȳt = ȳt−1 +(t +1)−1 (
βM−1 ⟨1M,ye

t ⟩+ vt − ȳt−1
)

(11)
ye

t+1 = τ(µ(ye
t ), ȳt). (12)

By interpreting ȳt as the estimator and ye
t as the state vector, this system takes the form an SRA

with Markovian state dynamics, and is thus amenable to the ODE method.

To compute the algorithm’s mean dynamics, we must have sufficient understanding of the
asymptotic behavior of (12) for fixed ȳ. The following lemma sets the stage by saying that, for
fixed ȳ, the state dynamics (12) is stable ergodic, with asymptotic mean beliefs equal to ȳ.

Lemma 1 Assume the mutation density is uniform with compact, connected support, and that each
agent’s PLM mutates each period (pm = 1). Fix ȳ and let ye

t evolve according to (12). Then there
is a distribution ν(ȳ) over beliefs such that yt → ye ∼ ν(ȳ) weakly. Furthermore, Eν(ȳ)ye

i = ȳ.

The proof is the Appendix.10 We can now study the stability properties of the SRA (11) - (12).
The mean dynamics are given by

dȳ
dt

= h(ȳ)≡
∫ (

βM−1 ⟨1M,ye⟩− ȳ
)

ν(ȳ)(dye). (13)

10Simulations according with the assumptions of the theorem, i.e. uniform draws for mutation and pm = 1, yield the
same stable instability as is evidenced in Figure 2 – indeed the associated figure is qualitatively indistinguishable: see
Appendix.
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By Lemma 1 we see that h(ȳ) = (β −1)ȳ. We conclude that, under our simplifying assumptions,
the stability properties of the mean dynamics associated with social learning align with those im-
plied by E-stability.11

Lemma 1 is cold comfort: after all, Keynes’ admonition that we’re all dead in the long run
holds in spades in Figure 2. It also raises an interesting question: What explains stable instability?

3.3 Explaining stable instability

Stable instability arises in a univariate model, so cross-over is not the culprit. Also, heterogeneity
of expectations cannot be central – see Figure 1 panel b; and Figure 2 demonstrates that widely
distributed (heterogeneous) initial beliefs do not induce instability, strongly suggesting that muta-
tion cannot be the primary driver of stable instability. Thus we view tournament play as our prime
suspect, and proceed with its interrogation.

The metric for tournament play is the fitness measure F , which, by equation (10), may be
interpreted as implementing a tendency to move the estimator towards the sample mean of past
data. Importantly, this is in contrast to our implementations of adaptive learning, which tend to
move the estimator towards the most recent realization of the data. This observation suggests
a two-pronged experimental approach to explaining stable instability. First, we modify adaptive
learning by implementing an algorithm that moves the estimator towards the mean of past data, and
see if we can induce stable instability. And second, we modify social learning by using a fitness
measure that rewards proximity to the most recent realization of the data, rather than to the mean
of past data, and see if we get instability as in the usual adaptive learning case.

3.3.1 Modified adaptive learning

The updating model (7) is modified in two ways: first, an idiosyncratic shock is introduced to
simulate mutation; and second, agents update their estimates based on the mean of all past data
rather than only on the newest data point. This latter modification simulates tournament play, as
will be explained in more detail below.

The model dynamics are now given by (6) and

ȳt = ȳt−1 + γ̂t(yt − ȳt−1) (14)
ye

it = ye
it−1 + γ

(
ȳt − ye

it−1 + εit
)
. (15)

Equation (14) provides the recursive estimation of the sample mean, associated with gain γ̂t . Equa-
tion (15), which comprises the principal distinction between this section and the previous, says

11To formally connect the stability properties of the mean dynamics (13) with those of the SRA requires demon-
strating a host of conditions are met: see assumptions M.1 – M.5 on pages 155 - 157 of Evans and Honkapohja (2001).
We leave this analysis to the motivated reader.
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that agents move a mutation – i.e. a perturbation given by εit – of their forecasts in the direction of
the sample mean. The εit are assumed mean zero, independently distributed across space and time,
and to have small support.

Equation (15) is meant to capture, at least in spirit, tournament behavior. In a tournament,
mutated forecasts are matched, and the best forecast is selected to perpetuate. In REE, yt = vt , and
thus the data represent iid draws, whence the best forecast is the sample mean: γ̂t = t−1. Equation
(15) says that agents move their mutated estimate in the direction of the best forecast.

The E-stability principle holds for the modified model. In particular,

Proposition 3 Assume ∑ γ̂t = ∞ and ∑ γ̂2
t < ∞. Under the dynamics (6), (14), and (15),

1. If 0 < β < 1 then ȳt converges to zero with probability one.

2. If β > 1 then ȳt converges to zero with probability zero.

Also, under constant gain, γ̂t = γ , the analogs of Propositions 1 & 2 can be developed. Stack
the dynamic system as before to get(

ye
t

ȳt

)
= B ·

(
ye

t−1
ȳt−1

)
+

(
γIM γ21M
0 γ

)(
εt
vt

)
, (16)

where

B =

(1− γ)IM + βγ2

M

(
1⊤M ⊗1M

)
γ(1− γ)IM

βγ

M 1⊤M 1− γ

 .

The eigenvalues of B are M −1 copies of 1− γ and λ±, where λ− < 1− γ < λ+. The following
proposition summarizing the results.

Proposition 4 Assume γ̂t = γ , and that initial values of ye
0 are drawn as in Proposition 2. The

dynamics implied by the system (16) satisfy the following properties:

1. If β ∈ (0,1) then yt and ye
it are asymptotically normally distributed around zero, and Eyt

converges to zero at rate 0 < λ+ < 1 where λ+ > 1− γ +βγ︸ ︷︷ ︸
λ̄

.

2. If β > 1 then E|yt | diverges at rate 1 < λ+ < 1− γ +βγ︸ ︷︷ ︸
λ̄

.

3. If mutation is shut down, i.e. εit = 0, then beliefs dispersion converges to zero almost surely.
Furthermore, ∆e

t ∼̇ N
(
µ∆e

t ,Σ∆e

t
)

where µ∆e

t ≈ (1− γ)tσ0 and Σ∆e

t ≈ 1
2M (1− γ)2tσ2

0 .

4. If β ∈ (0,1) and σε > 0 then, asymptotically, ∆e
t ∼ N

(√
2M−1

2M

√
M+1

M
σε√

2γ(1−γ)
, M+1

4M2
σ2

ε

2γ(1−γ)

)
.
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Thus, in the constant gain case, stability, i.e. convergence to a stationary distribution, continues
to turn on the size of β relative to one. Also, the dispersion of beliefs does not depend on vt , and
is eliminated at exactly the same rate as in the previous section.

Items 1 and 2 of the proposition requires some further discussion. Recall, from the discussion
following Proposition 1 indicates that the rate of convergence/divergence of yt is governed by
λ̄ = 1− γ + βγ . Items 1 and 2 of Proposition 4 thus say that the system (16) converges more
slowly than the usual adaptive learning dynamics when β < 1, and, more importantly, diverges
more slowly when β > 1.

Figure 3 provides clear evidence that the modified adaptive learning mechanisms exhibits sta-
ble instability of a form similar to social learning. Here γ̂t = t−1, and the figure should be compared
to Figure 1, which provides a simulation under the usual adaptive learning dynamics, and to Figure
2, which show social learning dynamics. Note that, consistent with Figure 2, in Figure 3 there is
no evidence of instability even after ten million periods.12

Figure 3. Modified adaptive learning: stable instability

3.3.2 Modified social learning

In Section 3.3.1, we modified the standard adaptive learning algorithm by dictating the estimator be
adjusted in accordance with its discrepancy from the sample mean of all past data, rather than from
the most recent realization of the data. This modification, in effect, respects the fitness measure
used in social learning. Here we work the opposite direction by modifying the fitness measure
used in SL to accord with the standard adaptive learning algorithm. Specifically, we set

F
(
ye

it ,y
t)=−(ye

it − yt)
2 = 2ye

ityt − (ye
it)

2 + terms common across agents , (17)

12Under adaptive learning modified to include mutation, we scale the σε down by a factor of five, which, in the
stable case, results in an ergodic distribution of beliefs with roughly the same variance as that obtained under social
learning.
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which should be compared with equation (10). In effect, beliefs nearest the most recent realization
of the endogenous variable are deemed fittest.

Figure 4 provides a simulation of the economy under modified social learning. This figure
should be compared with Figures 1 and 2. In particular, this figure demonstrates that modified
social learning has stability properties more closely aligned with the usual adaptive learning mech-
anism – instability after 10000 periods is clearly evidenced.13

A caveat merits comment. While the time path over the first 1000 periods always suggests
stability, there is considerable variation in the behavior of over the next 9000 periods, with some
simulations indicating continued stability and others becoming unstable more quickly that is shown
in the right panel of the figure. A statistical analysis over multiple simulations would be revealing.

Figure 4. Modified social learning: instability

3.3.3 Stable instability: discussion

Stable instability is a vaguely defined, transient phenomenon that does not lend itself to precise
explanation. It is not unique to social learning, and can arise under any learning mechanism if the
underlying model has expectational feedback sufficiently near unity.

In the macroeconomics literature, social learning has been found to induce stable instability in
instances where adaptive learning would not. Our two-pronged analysis here suggests that these
findings may reflect the chosen specification of the fitness measure, rather than the social learning
dynamic more broadly. In the next section, we test this hypothesis by considering social learning
– standard and modified – in the same New Keynesian environment studied by Arifovic, Bullard,
and Kostyshyna (2013).

13Arifovic, Grimaud, Salle, and Vermandel (2020) employ a social learning algorithm with a fitness measure that
discounts past forecast errors. Our fitness measure, (17), relies solely on the most recent forecast error since past
forecast errors are already reflected in current forecasts. Arifovic, Salle, and Truong (2023) also use a fitness measure
that conditions on contemporaneous errors to better fit experimental data derived from a New Keynesian environment.
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4 Social learning in a New Keynesian model

In this section we examine social learning and stable instability in a benchmark New Keynesian
model. Our model is chosen to align with Arifovic, Bullard, and Kostyshyna (2013) (ABK). In
deviation form, it is given by

IS: yt = Etyt+1 −σ
−1(it −Etπt+1)

AS: πt = δEtπt+1 +κyt

PR: it = ϕππt +ϕyyt

Here yt is log deviation of output from its flexible price level, πt is log deviation of the inflation
factor from the inflation target π∗, and it is the log deviation of the interest rate from its target i∗.

This model can be placed in the form (1) by eliminating the contemporaneously determined
interest rate and solving for output and inflation in terms of expectations. We have(

yt
πt

)
= βEt

(
yt+1
πt+1

)
, where (18)

β =
1

σ +ϕy +κϕπ

(
σ 1−δϕπ

κσ κ +δ (σ +ϕy)

)
.

We denote by ξ the eigenvalue of β with largest magnitude – it captures the expectational feedback
in the model, and so pins down the model’s determinacy and E-stability properties.

Because the model is purely forward-looking and absent exogenous shocks, the MSV solution
is yt = πt = 0. Bullard and Mitra (2002) demonstrate that this MSV is the unique REE and it
is stable under adaptive learning exactly when monetary policy is active, i.e. when the following
version of the Taylor principle is satisfied:

κ(ϕπ −1)+(1−δ )ϕy > 0. (19)

The main finding of ABK is that the MSV solution is stable under social learning regardless of
whether the Taylor principle is satisfied.

4.1 Stable instability in the NK model

We begin by reproducing the findings of ABK. Like them, we modify the mutation operator to
allow for a diminishing variance in the perturbation: using their notation, the period t mutation ε̂t
is taken as

ε̂t =
(
1− (decrease)× t/T

)
εt ,

where T is the length of the simulation and decrease∈ (0,1) measures the rate at which the variance
diminishes over time. We also adopt their quarterly calibration of the model: δ = 0.99, σ = 0.157,
and κ = 0.024.
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Figure 5 replicates the passive policy figure of ABK: the simulation length is 1000 periods,
with M = 30 agents, and policy parameters set as ϕπ = ϕy = 0.5.14 These parameters result in a
value of −0.007 for the LHS of equation (19) – the Taylor Principle is not satisfied: the model’s
steady state is indeterminate and E-unstable.15 The feedback parameter’s value is ξ = 1.01, which
is the same feedback used in our ad hoc univariate model.

Figure 5. Stable instability under SL with passive policy

In fact, numerical analysis shows there is no sign of divergence even after 1,000,000 peri-
ods. This is a remarkable finding. The monetary policy literature has long argued the imperative
that the Taylor Principle be satisfied. Admittedly, the reasoning behind the argument has evolved
somewhat. It (seems to have) started with the compelling intuition that policy makers should raise
rates more than one-to-one when faced with increased inflation, “lean against the wind” policy that
results in rising real rates, thus cooling the economy. The argument favoring the Taylor principle
became more rigorous when it was discovered that passive policy implies indeterminacy, and thus
raises the possibility that self-fulfilling “sunspot” equilibria may introduce increased volatility. Fi-
nally, Bullard and Mitra (2002) put the nail in the coffin by showing that the Taylor principle was

14All results are robust to using M = 300 agents, as in Arifovic, Schmitt-Grohe, and Uribe (2018).
15Some examinations of monetary policy include interactions with fiscal policy, which can affect the determinacy

and E-stability properties of the model’s steady state. We follow ABK and (implicitly) assume Ricardian fiscal policy.
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necessary for the MSV solution to be stable under adaptive learning. Figure 5 counters 20 years of
policy advice: if agents expectations evolve via a social learning dynamic then passive policy can
induce stable instability.

Figure 6 provides a simulation under modified social learning. As expected, instability emerges
over time horizons that are consistent with instability under adaptive learning. It merits observing
that the initialization of beliefs, which are drawn randomly using the mutation distribution, play
a significant role in the ensuing dynamics, and this leads to considerable variation in outcomes.
While instability always emerges, initializations that are very nearly centered at pre-policy-change
MSV levels lead to longer periods of transient stability. For this reason, increasing the number of
agents tends to increase the length of time before instability emerges.

Figure 6. Stable instability under modified SL with passive policy

4.2 Policy changes and social learning

In an economy populated with social learning agents, the central bank can use passive policy to
keep the economy near the MSV solution. This raises a natural question: can passive policy be
used to implement, say, an announced permanent change in the inflation target? The results so far
do not suggest an answer to this question: under passive policy social learners do not deviate from
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the MSV, but can they learn a new one?

To examine this question, we consider the following policy experiment that is perhaps a propos
to the times: we assume the inflation target has been at 5% for 100 periods, and then the central
bank announces an unexpected, permanent decrease in the target to 0%. Standard policy pre-
scription would say to implement this change by using an instrument rule that satisfies the Taylor
principle. This implementation is simulated in Figure 7. We note that realized output and inflation
very closely track mean output and inflation beliefs, so we refrain from plotting them.

Figure 7. Lowering the inflation target under SL with active policy

Here we have chosen an inflation coefficient in the instrument rule of ϕπ = 1.5, which leads to
a feedback magnitude of ξ = 0.97 < 1, guaranteeing determinacy and stability under adaptive
learning.

We see that the policy does not result in a decline in inflation, at least over the first 1000
periods; however output falls substantially. When the central bank lowers the inflation target, the
current relative inflation level is suddenly high, thus the instrument rule requires that the nominal
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rate is raised. Since the Taylor Principle is satisfied, this rise causes an increase in the real rate,
and hence a reduction in output. The failure of inflation to fall in part reflects the significant
weight placed on past inflation history, but it also reflects the slope of the Phillips curve: current
inflation puts a weight of 0.99 on expected inflation and only 0.024 on current output. Running the
simulation for 1,000,000 periods does not change the result.

Figure 8 provides a simulation under passive policy. In this case, the outcome is the same for
inflation, but the opposite for output. The reasoning is exactly the same as before: the fall in the
inflation target leads to a current relative inflation level that is suddenly high; however, this time
policy is passive, so the instrument rule raises the nominal rate less than one-to-one, resulting in
a fall in the real rate and a rise in output. The stability of inflation beliefs follows just as above.
Running the simulation for 1,000,000 periods does not change the result.

Figure 8. Lowering the inflation target under SL with passive policy

The failure of even active policy to move the economy to the new MSV solution is in part a
reflection of the stable instability induced by social learning. This observation suggests that active
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policy coupled with modified social learning might lead the economy to the new inflation steady
state. Figure 9 provides a simulation of exactly this experiment, and the results are as expected.
The lowering of the target leads to a reduction in output, just as before, but now inflation beliefs
adjust downward, raising output over time toward its steady state.

Figure 9. Lowering the inflation target under modified SL with active
policy

The very different responses, under SL, AL and modified SL, to an unanticipated permanent
reduction in the inflation target, are striking and forcefully illustrate the role of the fitness measure.
However, alternative scenarios can be imagined, and quite different results would likely arise from
an unanticipated persistent but temporary shock. AL allows for this possibility by using a constant
gain, tuned to capture the trade-off between tracking structural change and filtering noise, whereas
SL emphasizes long-term fitness measures. Bullard (2023) argues that the latter could be an ad-
vantage in adjusting to large but temporary shocks such as the Great Recession and the Pandemic
recession and subsequent inflation. The argument is that precisely because SL has genes strongly
adapted to the normal steady state, when a large but temporary disruption ends, the economy will
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more quickly leave the disruption behind.

These considerations suggest that both SL and AL approaches have advantages (which may
or may not be aligned at the individual and aggregate levels) in dealing with unforeseen large
temporary shocks. While this paper has focused on differences in fitness measures, it may be
equally important that the forecasting and decision rules in use include significant heterogeneity,
possibly reflecting very different past states of the economy, to ensure their alertness to changing
conditions.

5 Conclusion

Social Learning is an attractive and flexible learning model that has been used to study a wide
range of issues in macroeconomics, and other areas, including exchange rates, growth transitions
and finance. A major contribution of this paper has been to show that, at least with some specific
technical assumptions, SL can be set up as a stochastic recursive algorithm. This makes it amenable
to the ODE method, and in particular enables us to obtain mean dynamics in line with the E-
stability approach. Using this procedure we showed that asymptotic SL results are in accordance
with the expectational stability principle. This is important because E-stability is usually simple
to compute and has provided a reliable way to assess asymptotic behavior of learning algorithms
in economic models. A second contribution of this paper has been to identify the differing fitness
criteria explicitly or implicitly used in AL and SL as the source for the “stable instability” results
under passive monetary policy that have been observed under SL.

The analysis presented here can be extended a number of natural ways, and along three partic-
ular dimensions. First, the model under study could be enriched to include additional explanatory
variables, i.e. serially correlated observable shocks and/or lagged endogenous variables. Second,
within the models studied in the paper alternative forecast rules could be considered, including
behavioral rules along the lines found in experimental works: see Hommes (2013) discussion and
many details. Finally, alternative fitness measures could be considered, including measures that
condition on discounted lagged forecast errors, as in Arifovic, Grimaud, Salle, and Vermandel
(2020).16

Our focus on stable instability in the New Keynesian model reflects its importance to monetary
policy, as well as our intention to address and explain the apparently conflicting results found in
earlier studies, Arifovic, Bullard, and Kostyshyna (2013) in particular. It would be natural, and of
considerable interest, to examine asset-pricing applications, especially since the shorter time-scale
found in financial markets makes the possibility of stable instability all the more relevant.17

16Using this fitness measure, the cited paper obtains the intriguing numerical result in a non-linear NK model that
the basin of attraction of the (locally determinate) targeted steady state is larger under SL than it is under AL.

17For example, Branch and Evans (2011) and Williams (2023) consider stock-market models in which prices stay
for long periods near the fundamentals price, but occasionally follow bubble paths which endogenously pop and return
to the fundamentals price.
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We think SL and AL should be viewed as complementary approaches. AL can include (and
has included) heterogeneous forecasting rules. SL could in principle encode least-squares forecast-
ing rules as genes. A major issue for both approaches going forward is how to deal with structural
change. Because structural change can be permanent, temporary or recurring, there may be ad-
vantages in embedding both current-oriented and long-term-oriented fitness measures in learning
models.
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Appendix

Proof of Proposition 1 . Begin by diagonalizing the system (8):

(1− γ)IM + γM−1
β

(
1⊤M ⊗1M

)
= SΛS−1,

with Λ denoting the diagonal matrix of eigenvalues ordered such that

ΛMM = 1− γ(1−β )≡ λ̄ . (20)

With help from a computer algebra system, it is straightforward to show that we may write

S−1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

+
1
M


−1 −1 −1 · · · −1
−1 −1 −1 · · · −1

...
...

...
...

...
−1 −1 −1 · · · −1
1 1 1 · · · 1

 .

Noting
S−1ye

t = (ye
2t − ȳe

t , · · · ,ye
Mt − ȳe

t , ȳ
e)′ ,

we change coordinates to get

ye
it − ȳe

t = (1− γ)
(
ye

it−1 − ȳe
t−1

)
for i = 1, · · · ,M (21)

ȳe
t = λ̄ ȳe

t−1 + γvt . (22)

Now observe that the dynamics of ye
it − ȳe

t for i = 1 may be inferred from the dynamics for i =
2, · · · ,M by noting that ∑i (ye

it − ȳe
t ) = 0. Thus, it follows from equation (21) that, conditional on

ye
0, the dynamics of beliefs dispersion are deterministic, and they converge to zero regardless of β ,

establishing item 1. Items 2 and 3 follow by noting, from equation (20), that |λ̄ |< 1 ⇔ β < 1.

Proof of Proposition 2. Equations (21) and (22) continue to determine the dynamics, thus

ȳe
t = λ̄

t ȳ0 + γ

t

∑
n=1

λ̄
t−nvn.

By our assumptions on the determination of initial conditions we have ȳ0 ∼ N
(
0,M−1σ2

0
)
. It

follows that ȳe
t is normally distributed, with mean zero and variance

Σȳ
t =

σ2
0

M
λ̄

2t + γ
2
(

1− λ̄ 2t

1− λ̄ 2

)
σ

2
v ,

which, combined with yt = β ȳe
t−1 + vt , establishes item 1.
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Turning to item 2, first note that provided M is sufficiently large, we may take ye
i0 and ȳe

0 as
approximately independent. It follows that

ye
i0 − ȳe

0 ∼̇ N

(
0,
(

M+1
M

)
σ

2
0

)
.

Iterating (21) we have

ye
it − ȳe

t = (1− γ)t (ye
i0 − ȳe

0) ∼̇ N

(
0,
(

M+1
M

)
(1− γ)2t

σ
2
0

)
.

Now let ψ2
t = M−1 (M+1)(1− γ)2tσ2

0 so that ψ
−1
t (ye

it − ȳe
t ) is standard normal. It follows that

Mψ
−2
t (∆e

t )
2 ∼̇ χ2 (M). Item 2 of proposition 2 is established using the Fisher approximation,

which says that for large M we have x ∼ χ2 (M) implies
√

2x ∼̇ N
(√

2M−1,1
)
.

Proof of Lemma 1. Fix ȳt and ye
t . We need to understand the distribution σ (µ(ye

t ), ȳt) in the spe-
cial case that all agents hold the same forecast: ye

it = ye
jt ≡ ye, where we drop the time subscript for

the remainder of this step to thin notation. The distribution of interest, σ (µ(ye), ȳ), characterizes
the outcomes of the following procedure: two independent draws, ε1 and ε2, from the mutation
perturbation identify two candidate forecasts x1 = ye + ε1 and x2 = ye + ε2; the candidate forecast
nearest to ȳ is selected.

Let f be the density of random mutation ye → ye + ε , with F the associated distribution. To
determine the density function associated to the distribution σ (µ(ye), ȳ), let x ∈ R represent an
arbitrary forecast, and ask the following question: what is the probability that a mutation of ye is
worse that x? First suppose x < ȳ. Then a random draw x′ = ye + ε ′ is worse, i.e. farther from ȳ,
if it is less that x or if it is greater than 2ȳ− x. Symmetric reasoning addresses the case ȳ < x. We
conclude that the density function of interest, dσ ,is given by

dσ(x) =

{
2(F(x)+1−F(2ȳ− x)) f (x) x ≤ ȳ

2(1−F(x)+F(2ȳ− x)) f (x) x ≥ ȳ
(23)

Figure 10 provides graphical intuition for this formula. The approximate probabilities of selecting
two distinct points, x < 0 < x̃, are considered – the former in blue and the latter in red. The solid
blue lines identify the set of all points (x,x′) and (x′,x) in (x1,x2)-space for which x′ is worse than
x. The dashed blue rectangles approximate the events that one of these points is the outcome of the
random draw (ye + ε1,ye + ε2) of candidate forecast models.

For fixed ȳ and ye
t , let

ye
t+n+1 = τ

(
µ
(
ye

t+n
)
, ȳ
)
. (24)

We adjoin a projection facility to this dynamic to ensure ye
t+n remains in a compact ball cube

centered at ȳ. The radius of this ball can be taken as arbitrarily large – we only need compactness
for the argument to hold.
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f (x̃)∆x̃

1
−

F
(x̃
)

f (x̃)∆x̃
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Figure 10. Selection density

Our first goal is to establish that (24) is stable ergodic, i.e. ye
t+n convergences weakly to a

random vector distributed as Γȳ. Denote by B the Borel subsets of B, and by Qȳ(·, ·) the Markov
transition characterized by (24):

Qȳ(ye,A) = prob
(
τ (µ (ye) , ȳ) ∈ A

)
, for all ye ∈ B, A ∈ B. (25)

By Doeblin minorization, to demonstrate stable ergodicity it suffices to find N ∈ N and a measure
λ on B, such that

QN
ȳ (y

e,A)≥ λ (A), for all ye ∈ B, A ∈ B, (26)

where QN is the N-step iteration of Q. To this end, expanding the space B if necessary, embed
a lattice in B with N1 uniformly distributed nodes such that neighboring nodes differ only in one
coordinate, with the difference set at ∆/3; and cover B in N1 open cubes {Bi}N1

i=1 of side-length ∆/2
centered on the nodes: see Figure 11 for illustration. By construction (from the overlapping nature
of the cover and from the mutation distribution properties, i.e. uniform with compact, connected
support), it follows that for any n > N1, there is a δ (n) > 0 such that the probability of moving
from Bi to B j in n steps is greater than δ (n). In particular, n > N1 =⇒ Qn

ȳ(x,Bi) > δ (n) for all
x ∈ B and all Bi.
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Figure 11. Open cover figure

Now let λ̂ be Lesbesgue measure on B. Note that it suffices to show (26) holds for open cubes,
so let A ∈ B be any open cube, with, say center at x̂ ∈ B. Then x̂ ∈ Bi for some element of the
cover. Let ye be in the closure of Bi and note that Qȳ (ye,dx) is the conditional density of our
Markov process. Because Bi has side-length ∆/2, we know that this density is strictly positive on
the closure of A∩Bi. Let Qmin

ȳ (ye) be its minimum value. Since Qmin
ȳ (·) is continuous in ye, we

may let Qmin
ȳ be the minimum over the closure of Bi. We conclude that

ye ∈ Bi =⇒ Q(ye,A∩Bi)≥ Qmin
ȳ · λ̂ (A∩Bi) .

Since the center of A is in Bi, it follows that there is a δ̂ > 0 so that λ̂ (A∩Bi) ≥ δ̂ λ̂ (A). Putting
this all together, we can take N = N1 +1 and λ = δ (N)δ̂ λ̂ , and conclude that (26) holds.

We have established weak convergence of ye
t to a random vector distributed as Γȳ. Denoting its

mean by (ȳe
1, . . . , ȳ

e
M), we have, from the key insight, that ȳe

i = ȳe
j ≡ ȳe. We claim that ȳe = ȳ. To see

this, first note that equation (24) implies ȳe = Eσ (µ (ȳe) , ȳ), and that the density of σ (µ (ȳe) , ȳ) is
given by (23), with f a uniform distribution, centered at ȳe, with support ∆> 0. Direct computation
shows18

Eσ (µ (ȳe) , ȳ) =


ȳe + ∆

6 ȳe ≤ ȳ−∆/2
4(ȳ−ȳe)3

3∆2 − 2(ȳ−ȳe)2

∆ + ȳ ȳ−∆/2 < ȳe ≤ ȳ
4(ȳ−ȳe)3

3∆2 + 2(ȳ−ȳe)2
∆ + ȳ ȳ < ȳe ≤ ȳ+∆/2

ȳe − ∆
6 ȳe > ȳ+∆/2

(27)

18This is where we are using pm = 1.
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We see that ȳe = Eσ (µ (ȳe) , ȳ) implies ȳ−∆/2 < ȳe < ȳ+∆/2, so that

ȳe =
4(ȳ− ȳe)3

3∆2 ± 2(ȳ− ȳe)2

∆
+ ȳ. (28)

Divide each side of (28) by ∆, set the equation to zero, and let ρ = ∆−1(ȳ− ȳe), to get

ρ

(
4
3

ρ
2 ±2ρ +1

)
= 0. (29)

Since roots of the quadratics are necessarily complex, we conclude that ρ = 0, i.e. ȳe = ȳ, which
establishes our claim.

Proof of Proposition 3. We may write the dynamic as

ȳt = ȳt−1 + γ̂t

(
β

M
1⊤Mye

t−1 − ȳt−1 + vt

)
(30)

ye
t = (1− γ)ye

t−1 + γ1M ȳt + γεt (31)

Now let xt = (ye
t−1,vt) and ξt = (1,εt−1,vt). Then, for fixed ȳ, the state dynamics (31) becomes

xt+1 = ((1− γ)IM ⊕0)xt +

(
γ1M ȳ γIM 0

0 0 1

)
ξt+1.

It follows that the system (30)-(31) has the appropriate SRA form for application of the ODE
method. Thus let

H(ȳ,xt) =
β

M
1⊤Mye

t−1 − ȳ+ vt .

For fixed ȳ, we may compute, using 31, that Eye
t = ȳ, so that

h(ȳ) = lim
t→∞

EH(ȳ,xt) = (β −1)ȳ.

The ode dȳ/dτ = h(ȳ) is Lyapunov stable at ȳ = 0 provided β < 1, and is not Lyapunov stable if
β > 1.

Sketch of Proof of Proposition 4. The arguments here are similar to those for Propositions 1 and
2, and so they are sketched. Let ψ =

(
4(1− γ)+βγ2)−1/2

. Using Mathematica, we may determine
that the eigenvalues of B (see (16)) are M−1 copies of 1− γ and

λ
± = 1− γ +

βγ2

2
± γ

2

√
β

ψ
,

from which the stated stationarity conditions and properties of λ± follow. Continuing as above,
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we may write B = SΛS−1 with

S−1 =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0


+

1
N



−1 −1 −1 · · · −1 0
−1 −1 −1 · · · −1 0

...
...

...
...

...
...

−1 −1 −1 · · · −1 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0



+
ψ

M



0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0

−1 −1 −1 · · · −1 M
2ψ

(
β−1/2 + γψ

)
1 1 1 · · · 1 M

2ψ

(
β−1/2 − γψ

)


.

The remaining results follow from this decomposition.
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