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Section 1.1: Parent Functions

e One of the more challenging problem types in 111 is the problem of graphing functions.
e Without just testing a bunch of points and connecting some lines, how do you graph functions?

e Main idea of this section: there are some functions that are easy to graph (called parent functions)
and most other functions that we’re interested in graphing are going to be transformations of those
parent functions.

e So let’s first learn what the parent functions are and look like.
e Let’s start with an easy graph: f(z) = = (draw on board)

— Domain
— Image
— Long term behavior

— Zeroes
e Let’s step it up a little and look at f(z) = 22

— Domain
— Image
— Long term behavior
— Zeroes
e Repeat with 23 and z*

e What patterns do you notice (LTB and zeroes)?

e Let’s generalize this to f(x) = 2P for positive whole numbers p (recall that these are called “monomi-
als”)

e What about the negative whole numbers though?
e Go through same process where you cover. ..

— Domain

— Image

— Long term behavior
— Zeroes

o ...for f(z) = 2 (recall that these are called “basic rational functions”), again starting with p = 1,
doing examples through p = 4, and then generalizing



So now that we’'ve dealt with f(z) = a? for all whole numbers p (except 0, why have we skipped
07), let’s look at f(z) = z!/P for (positive) whole numbers p (recall these are called the “basic power
functions”).

Start with p = 1 through p = 4 and don’t forget to discuss

— Domain
— Image
— Long term behavior

— Zeroes

If we have time at the end of the week, we’ll talk about f(z) = z'/~? and f(z) = 2P/9 more generally,
but for now, we’ll call this sufficient.

Next up: e* and In(x)
Then discuss even and odd functions, by using P as a motivating example for each type.

— A function f(z) is even if, for all z in the domain of f, f(—x) = f(z)

— A function f(x) is odd if, for all « in the domain of f, f(—z) = —f(x)
How do we check if a given function is even or odd? If given a formula, compute f(—zx)
Example:
flr) = 5 7 is even
f(x) = 25 + 23 is odd
f(x) =z + 1 is neither
f(z) = 01is both even and odd! (This is the only function with this property)

If given a graph, what are we looking for?

Lemma: Even functions are those functions which have reflective symmetry across the y-axis. Odd
functions are those which have 180° rotational symmetry about the origin.

Justify this

Graph some wonky looking even and odd functions on the board

Section 1.2: Vertical Transformations

There are three primary types of vertical transformations that we can do.

— Translations
— Reflections
— Stretches

Say we want to translate the classic parabola up one unit. How might we do that?
Let’s find some points first and see.

Then talk about this for general functions. Shifting up 1 unit means adding 1 to all the y-values on
the graph, so we'd better think about f(z)+ 1

Generalize to f(z) + k (mention shifting down)
What about reflecting across the xz-axis? Make our y-values negative!

What about stretching by a factor of A? Multiply by A!



Each transformation on its own is fairly straightforward

— If we want to graph x> + 1, we shift the graph of z3 up 1 unit
— If we want to graph — In(x), we reflect the graph of In(z)
— If we want to graph %\/5, we stretch the graph of \/x by a factor of %

e What about combining transformations?

e It’s important to note that the order of transformations (sometimes) matters: consider the difference
between starting with 3, first translating and then stretching, or first stretching and then translating.
Keep track of the “center” of the graph.

Let’s look at an example that we’re all familiar with: the line

We know that a linear function can always be represented by g(x) = ma+b for some real numbers
m and b.

What does this mean in context? It means that we first stretch the parent function f(z) = z by
a factor of m and then we shift the line up/down by b

— Hence, we can get every line by some combination of vertical tranformations of f(z) = x.

Can we get every parabola that way?

Section 1.3: Horizontal Transformations

e To get certain parabolas, we have to have horizontal transformations as well
e We again, have three types of horizontal transformations

— Translations
— Reflections
— Stretches

e Let’s shift f(z) = 22 one unit to the right

o Generalize to f(x — h)

e Let’s stretch f(z) = 22 by a factor of 3

e Generalize to f(Bz)

e Let’s reflect f(x) = 2 across the y-axis

e Generalize to f(—x)

e Again, each transformation individually is fairly straightforward

— If you want to graph f(z) = In(z + 1), shift graph of In(z) to the left 1 unit
— If you want to graph f(z) = v/—2 = (—z)/2, reflect graph of \/z across y-axis
— If you want to graph f(x) = (5x)2, stretch the 2-values by a factor of %

e Notice with this last example, we could rewrite f(z) = (5z?) = 2522

This tells us that for this particular function, a horizontal stretch by a factor of % is the same as
a vertical stretch by a factor of 5.

— So in this case, there are multiple different ways to think about the same transformation
What about the function f(z) = In(5z)?
— Rewrite this as f(z) = In(5) + In(x), so this is a vertical translation by In(5)

— So stretches don’t always translate to stretches



— Sometimes, stretches don’t translate into anything (draw something spiky)
e As with vertical transformations, order of horizontal transformations matters:

— The function In(3z — 1) is different from In(3(z — 1))

— Note that, unexpectedly, In(3z — 1) is shift by 1, then stretch by %, whereas In(3(z — 1)) is stretch

by % then shift by 1. This looks like the opposite of what order of operations suggests.

e How to remember which transformations are vertical and which are horizontal: remember that vertical
transformations affect the y-values and horizontal transformations affect the z-values. So vertical
transformations should occur on the “outside” of functions while horizontal transformations should
occur on the “inside”

Section 1.4: General Transformations

e First, summarize all vertical and horizontal transformations.
e It turns out that we can do as many of these transformations as we want at a time

e We call a function g a transformation of another function f if there are numbers A, B, k, and h, so
that for all z, g(x) = Af(B(x — h)) + k.

e If you want to graph a transformation, it’s important to first write it in the form of a general transfor-
mation (with A, B, k, and h in the appropriate locations), and then graph in the following order
1. Vertical stretch by A
2. Vertical shift by k
3. Horizontal stretch by é
4. Horizontal shift by h.

e Note: the book says that you have to graph things in this exact order. This is not true! There are
many orders that you can do these transformations in. The important thing is that you do vertical
stretches before vertical shifts and horizontal stretches before horizontal shifts. Any ordering which
has that property is fine.

e Example 1 (already in transformation form): graph g(z) = 2e~(®=3) 44

e Example 2 (not in transformation form): graph g(z) = (2z —1)'/3

e How do we reverse this process? If you are given a graph, can you come up with an equation for the
function that describes the graph?

— In general, this is easier said than done. But with a little bit of guidance (e.g. if I also give you
the parent function), you can do it!

— Example, graph g(z) = —3(z+1)?+ 5 and figure out the equation, given that the parent function
is f(z) = 2% (not z* or 25 etc.)

Section 1.5: Justification (Beyond Functions)

e Functions definitely aren’t the only thing that we can graph

e For example, we can graph circles, but those definitely aren’t functions (why?)
e How do we describe a circle of radius 1?7

— justify the equation for this circle

— How do we tell if a given point is on the circle? (e.g. (.5,.5))



e Circles aren’t the only non-functions we can graph. Most things that are equations involving only x,
y, and numbers are things that we can graph, even if they’re not usually very easy to graph.

e Def: the graph of an equation is the set of all points (z,y) which satisfy that equation (i.e.), when you
plug them into the equation, you get something true back out.

e Example: is the point (2, —/5) on the graph of y? = 23 — 22 4+ 1?7 What about (1,v/3)?
e How do we transform the graphs of these equations?

— Horizontal transformations are going to work the exact same way.

— Replacing by x — h shifts the graph to the right h units

— Replacing z by Bz stretches the graph horizontally by a factor of %
— What about vertical transformations?

— Earlier, we didn’t have a y to deal with, at least not explicitly. But what we were really graphing
was y = Af(B(z — h)) + k (stretch by A, then shift k), so we could rewrite this as & (y — k) =
f(B(x = h)).

— This tells us that replacing y by y — k shifts up by & units

— Replacing y by %y stretches by a factor of A. Equivalently, replacing y by Ay gives a stretch by
a factor of .

— And this is great because our vertical and horizontal transformations are completely symmetric.
Subtracting means shift right/up and multiplying means stretching by the reciprocal.

e Ex: Graph the equation (2(z —1))? + (3(y + 2))? = 1. (after doing the graph) How is this different
from the graph of (—2(x —1))? + (3(y +2))? = 1?

e Let’s look at our favorite functions: lines.

e All lines have the same parent function: p(x) = 2. And we know that we can get every line by doing
a vertical stretch, then a vertical shift of p(z). But also note that we can get every line by doing a
vertical stretch, then a vertical shift, then a horizontal shift, where we are moving the origin to any
point on the line.

e So if (zg,yo) is a point on a line with slope m, the equation of that line can be written as y — yg =
m(x — o). This is called point-slope form and it’s handy in calculus.

e Example: the line that passes through (1, —3) with slope —4 has equation y + 3 = —4(x — 1).

e Example: the line that passes through (2,5) and (—3,4) has slope _43’ _52 = %, so it has equation
y—5=121(x-2)ory—4=1(z+3).

Section 1.6: Periodic Functions

e Motivating example: consider a ferris wheel with radius 80 meters, positioned so that it is 100 meters
off the ground. The radius spins so that each second, it rotates exactly 1 degree counterclockwise.
Consider h(t), the function which gives your position as a function of ¢, which describes the number of
seconds since you have boarded the ferris wheel. Let’s plot some points on the graph of h(t).

e Hey, notice how this graph repeats itself every 360 seconds?

e Def: We call this being periodic. More generally, a function f is periodic if there exists a number p so
that f(z +p) = f(x) for all z in the domain of f. The period of f is the smallest p with this property.

e Notice that f(z + p) is one of our transformations (which one?). So periodic functions with period p
are the functions such that when you shift the graph to the left p units, you get the exact same graph.

e Examples: are the following functions periodic? Draw graphs which are...



— ...periodic that aren’t sin or cosine (maybe a wiggle at the top)
— ...periodic with asymptotes
— ...not periodic, but repetitive

What’s the deal with this “smallest” p? Why did we say that? Use one of the above graphs to show
that period could be p, 2p, 3p, etc. if we don’t define it to be the smallest one

Note that a periodic function is completely determined by its output values on any interval of length
p (i.e. [a,a+ p) for some a). After all, if I want to know what f(x) is for any z, I can simply move x
some number of periods so that it fits in that interval.

Example: Consider the function f, which has period 5. On the interval [~2,3), f(z) = —2?+1. Find
f(1). Find f(4). Find f(—10). Graph f. Find all z values so that f(z) = . Find all z values so that

fl@)=—3.
Let’s go back to our ferris wheel height function. What are some other interesting features of this
graph?

There is an obvious midline. What is the height of the midline of the function?

Def: This motivates the following definitions. If f(z) is a periodic function with maximum value M
and minimum value m, then the midline of f is the line given by y = M;m. The amplitude of f is the
quanitity (M —m).

Note that the amplitude is the distance from the midline to either the max or the min.

Note also that the midline and amplitude don’t have to exist. If f has no min or no max, then they
don’t exist.

Example: Draw a graph of a periodic function. Find the period, midline, and amplitude of the
function.

Perhaps it’s worth observing that none of our parent functions are periodic. This should be a hint that
we're going to have some new parent functions in the nearish future.

Notes

Make sure to touch on point-slope form of a line (but this should be in 1.4)

Idea: assign challenge problem, but say you can either get it right, or you can write a couple sentences
explaining what you tried and why you aren’t sure how to do it.

Idea: give students access to webwork to use for practice problems and steal a test question from the
webwork

On exam, don’t ask students to graph transformations of 22 or anything easy to compute by hand.
Either do exponential, log, fractional power, or very large integer power of .



