RESEARCH STATEMENT

GREG KNAPP

1. Introduction

My research is dominated by the central theme of complexity. My current work is about computing bounds for the number of solutions to Thue equations by classifying solutions according to their complexity and the projects in which I am interested in pursuing in the future have to do with bounding the complexity of certain objects or proofs.

2. Thue’s Inequality

2.1. Current Work. My thesis project concerns the following problem about solutions to a polynomial inequality. Let $F(x, y)$ be an irreducible integral binary form (meaning that $F(x, y)$ is a homogeneous polynomial in two variables and has integer coefficients) of degree $n \geq 3$. Let $h \in \mathbb{Z}_{>0}$. The main motivating question of my research is: how many solutions are there to the inequality

$$|F(x, y)| \leq h$$

for $x, y \in \mathbb{Z}$? It is not obvious that there are only finitely many, though Thue proved this in 1909 in [19], resulting in the inequality (1) being named Thue’s inequality.

Mahler later (1933) gave upper bounds on the number of integer-pair solutions to (1) by considering the problem geometrically. He noted that by taking x and y to be real variables rather than integer variables, the inequality $|F(x, y)| \leq h$ corresponds to a region of the xy-plane, like in figure 1.

![Figure 1. $|x^5 + 3x^4y - y^5| = 10000$](image)

Mahler’s insight was to use intuition from the geometry of numbers, which indicates that the number of integer-pair solutions to (1) should be approximately equal to the volume of the region bounded by the curve $|F(x, y)| = h$. A quick change of variables relates the volume of the region bounded by the curve $|F(x, y)| = h$ to the volume of the region bounded by the curve $|F(x, y)| = 1$ and in [10], Mahler gives an upper bound for the volume of the region bounded by $|F(x, y)| = 1$. Consequently,
when counting the number of solutions to (1), it typically suffices to count the number of integer pair solutions to

|F(x, y)| = 1. \tag{2}

In my thesis, I improve both asymptotic and explicit upper bounds on the number of solutions to (1) and (2) in particular contexts. Before stating these results, however, we need to take note of Siegel’s observation in [16] that the number of nonzero summands in F(x, y) should play an important role in the number of solutions to (1). Roughly speaking, this is because solutions (p, q) to (2) correspond to good rational approximations $\frac{p}{q}$ of roots of $f(Z) := F(Z, 1)$. Rational numbers cannot approximate the properly complex roots of $f(Z)$ very well, so the number of solutions to (2) should be controlled by the number of real roots of $f(Z)$, which is in turn controlled by the number of nonzero summands in $f(Z)$ (see Lemma 1 in [13]). To that end, suppose that $F(x, y)$ is the sum of $s + 1$ nonzero monomials.

Note that the correspondence between solutions, (p, q), and rational numbers, $\frac{p}{q}$, is only one-to-one if gcd(p, q) is guaranteed to be 1. This is guaranteed for solutions to (2), but is not guaranteed for solutions to (1). To handle this situation, we say that a solution to (1) is primitive if gcd(p, q) = 1 and we first count only primitive solutions to (1). We can then compute bounds on the total number of solutions from bounds on the number of primitive solutions using partial summation methods as in [11].

2.1.1. Results. My asymptotic result stems from an approach to this problem initiated by Mueller and Schmidt in the 1980s, the major ideas of which are contained in [11]. They classify each solution as being large, medium, or small, and they use different techniques to find upper bounds on the number of each different type of solution. Mueller and Schmidt find an excellent upper bound on the number of large solutions, but conjecture that their bounds for the number of medium and small solutions can be improved. My first result improves the bounds on the number of medium solutions to inequality (1).

\textbf{Theorem 2.1} (K., 2021). Let $F(x, y)$ be an irreducible, integral binary form of degree $n \geq 3$. Suppose that $F(x, y)$ is the sum of exactly $s + 1$ nonzero monomials and that $n \geq 3s$. Let H denote the maximum of the absolute values of the coefficients of F. Let $N_M(F, h)$ denote the number of primitive, medium solutions to (1). Then

$$N_M(F, h) \ll s \left(1 + \log \left(s + \frac{\log h}{\max(1, \log H)} \right) \right).$$

This result is an improvement on Bengoechea’s result in [4] (both in the sense that my definition of a “medium” solution is broader than that in [4] and in the sense that my upper bounds are smaller by a factor of s in some cases and $\log s$ in others) and the methods which lead to this result give a fundamentally different proof of the same bound on the number of medium solutions that can be found in a paper of Akhtari and Bengoechea [1].

My explicit result comes in a more specific context. In 2000 in [15], Thomas is able to show that when $F(x, y)$ is an irreducible, integral binary form of degree $n \geq 6$ which is a trinomial (fix $s = 2$, meaning $F(x, y) = ax^n + bx^ky^{n-k} + cy^n$ for some $a, b, c, k, n \in \mathbb{Z}$ with $0 < k < n$), then there are no more than $8w(n) + 8$ integer pair solutions to (2) where $w(n)$ is piecewise defined by the following table:

$\text{The use of } s + 1 \text{ rather than } s \text{ to denote the number of nonzero summands is a standard convention, loosely because this use of } s \text{ is properly analogous to the degree, } n. \text{ A degree } n \text{ polynomial can have at most } n + 1 \text{ nonzero summands, so we use } s + 1 \text{ to denote the number of nonzero summands. Moreover, by using } s \text{ in this way, } s \text{ must live in the interval } [1, n], \text{ whereas the number of nonzero summands must live in the less “natural” interval } [2, n + 1]$
Note that solutions to (2) are automatically primitive, so there is no need to add that hypothesis. In my thesis, I use a mixture of theoretical techniques and Python code to show that $w(n)$ can be improved as follows:

Theorem 2.2 (K., 2021). The function $w(n)$ in Thomas’ result can be replaced by $z(n)$, defined with the following table.

<table>
<thead>
<tr>
<th>n</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10–11</th>
<th>12–16</th>
<th>17–38</th>
<th>≥ 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(n)$</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

It is worth noting that 4 is the best possible value that could be obtained for $z(n)$ using any approach analogous to Thomas’, though it remains possible that $z(n)$ could be reduced to 4 for values of n less than 219.

2.1.2. Methods. Both of these theorems result from improvements I made to a counting technique based on what is called the gap principle. The gap principle is not a specific theorem, but rather the general notion that “large enough” solutions to (2) should be “exponentially far apart.” This notion relies on the previously stated correspondence between primitive solutions to (2) and good rational approximations of $F(Z, 1)$. A typical result looks roughly like this: if (p, q) is a primitive solution to (2), then there exists a root α of $f(Z) := F(Z, 1)$ so that $\left| \frac{p}{q} - \alpha \right| < \frac{K}{q^r}$ (for some specific values of K and r which depend on F).

Now we can show that solutions which produce good rational approximations to the same root of $f(Z)$ must be far apart. Suppose that (p, q) and (p', q') are distinct solutions to (2) with $q' \geq q > 0$ and so that $\frac{p}{q}$ and $\frac{p'}{q'}$ are both close to the same root, α, of $f(Z)$ in the sense of the previous paragraph. Then by the fact that

$$\left| \frac{p}{q} - \alpha \right| < \frac{K}{q^r} \quad \text{and} \quad \left| \frac{p'}{q'} - \alpha \right| < \frac{K}{(q')^r},$$

the triangle inequality allows us to conclude that

$$\left| \frac{p}{q} - \frac{p'}{q'} \right| < \frac{2K}{q^r}.$$

A little bit of additional estimation shows that

$$\frac{1}{qq'} < \frac{2K}{q^r},$$

and rearranging this inequality yields $q' > \frac{q^r}{2K}$. This is the essence of the gap principle: by starting with only the assumptions that $q' \geq q$ and that $\frac{p}{q}$ and $\frac{p'}{q'}$ are good approximations of the same irrational number, one can find that there actually an exponential gap between q' and q.

This exponential gap can help quantify the maximum number of such q that can live between two fixed quantities. My results are largely a function of discovering sharp upper bounds for that maximum.

2.2. Future Work. I have several ideas for future work that could be done on the topic of Thue inequalities. In order to find better bounds on the total number of solutions to (1), we must find better bounds on the number of small solutions to (1). This is an extremely broad goal, however. Concretely, there are a number of observations I have made in the literature that could lead to improvements in these bounds.
First, Akhtari and Bengoechea in [1] make major improvements to the bounds on the number of small solutions under the assumption that h is small relative to the discriminant of F. I would like to explore their techniques to see if their work can be modified to allow for improvements in general or in other settings (say, if h is small relative to the sizes of the coefficients of F to fit into a conjecture of Mueller and Schmidt in [11]).

In [18], Thomas uses a novel approach to counting solutions to (2) when F is a trinomial. Grundman and Wisniewski extend this approach to tetranomials in [6] and I would like to explore whether this approach can be further extended to arbitrary binary forms.

Moreover, I believe that both Thomas’ ([18]) and Grundman and Wisniewski’s ([6]) work can be improved by the following means. Both papers appeal to a result of Bombieri and Schmidt in [5] generalizing the Thue-Siegel method. Bombieri and Schmidt’s result, however, is based off of a different approximation philosophy and a different approximation result than what is found in Thomas’ or Grundman and Wisniewski’s papers. By integrating Thomas’ or Grundman and Wisniewski’s approximation result into Bombieri and Schmidt’s general method, I believe that both Thomas’ and Grundman and Wisniewski’s results could be further improved.

Finally, it is worth noting that foundational papers on Thue’s Inequality did not have access to the hindsight that we now have. For instance, Bombieri and Schmidt’s paper [5] on the Thue-Siegel method does not keep track of the number of nonzero coefficients of $F(x,y)$. It would be worthwhile to update Bombieri and Schmidt’s results to account for this additional parameter.

3. Other Areas of Interest

3.1. Height of A Basis. Of additional interest to me is the theory of height functions. The Weil height on \mathbb{Q} can be generalized to a height function (which I will still call the Weil height) on $\mathbb{P}^n(\mathbb{Q})$ which still enjoys the Northcott property. For any number field, K of degree n, one might consider the behavior of the Weil height on \mathbb{Q}-bases of K, thought of as points in $\mathbb{P}^{n-1}(K)$ by treating the basis $\alpha_1, \ldots, \alpha_n$ as the point $(\alpha_1 : \cdots : \alpha_n)$. Since the Weil height has the Northcott property, there exists a \mathbb{Q}-basis of K of minimal height. Let $B(K)$ denote the minimal height of any basis of K.

Conjecturally, $B(K)$ is close to $|\Delta_K|^{1/2}$ (up to a constant factor depending on $n = [K : \mathbb{Q}]$), where Δ_K is the discriminant of K. In [17], Silverman shows that $B(K) \gg_n |\Delta_K|^{1/2}$. In [13], Roy and Thunder show that for any $\varepsilon > 0$, $B(K) \ll_{n, \varepsilon} R(K)^{1-\varepsilon} |\Delta_K|^{1+2\varepsilon}$ where $R(K)$ is the regulator of K. In the quadratic imaginary case, they actually construct such a basis. In [14], Ruppert shows (non-constructively) for quadratic K that $B(K) \ll |\Delta_K|^{1/2}$.

Computing $B(K)$ for different fields K is repetitive and tedious, so I expect that these computations could be carried out effectively with a computer. I would like to encode Roy and Thunder’s construction for quadratic fields, constructively compute $B(K)$ for a large number of quadratic K, then see if this provides insight into finding a constructive proof of Ruppert’s result.

Moreover, I expect that this problem is easier when O_K is monogenic since $|\Delta_K|$ relates nicely to a power basis for K and the question of basis height can then be connected to the question of whether or not number fields have defining elements of small height. The monogeneity condition is more manageable when the defining polynomial of K has few coefficients (see [7] for instance) and so as a first step, it might be worth looking at $B(K)$ under the condition that K is defined by a binomial or trinomial and O_K is monogenic.

\[2\] In this section, I am conflating the Weil height with an appropriate normalization of the Weil height for simplicity.
3.2. **Elementary Function Arithmetic.** Philosophically, the question of what makes a good proof has always intrigued mathematicians. A plausible (though not indisputable) answer to this question is that the best proof of a theorem is the simplest—the one that uses the fewest assumptions. This motivates the main question in the field of reverse mathematics: how many assumptions are needed to prove a given theorem? More precisely, given any theorem, can it be proven from a simple set of axioms? If so, how simple?

One such candidate for a simple axiom scheme is that of Peano Arithmetic. The axioms of Peano Arithmetic describe the arithmetic of the natural numbers: how to add, multiply, and exponentiate numbers, together with a scheme of induction which allows you to prove theorems from inductive techniques in addition to the deductive logical rules that are always available to mathematicians. Of more interest for technical reasons is the axiom scheme of Elementary Function Arithmetic (EFA), which has somewhat fewer axioms than Peano Arithmetic, but functions similarly.

Given that EFA appears to have much to say about the natural numbers and little to say about sets, it may be surprising to learn that much of modern mathematics can be derived from the axioms of EFA. One can work with much or all of finite dimensional linear algebra, the theory of finite groups, and even some analysis (see page 271 of [3]). Colin McLarty is working on number field theory in EFA and to that end, I tried to prove Minkowski’s Linear Forms Theorem from the axioms of EFA for my master’s thesis. I was able to show in [8] that conditional on my definition of the volume of a convex polytope being well-defined in EFA, Minkowski’s Linear Forms Theorem follows from the axioms of EFA.

I am currently collaborating with a graduate student at Montana State University to show the well-definedness of volume. Future work for this project might include showing that a result of Raghavan in [12] follows from the axioms of EFA and that hence, the number field property of “having an embedding into \(\mathbb{R} \)” can be defined in EFA.

3.3. **Nonnegativity and Sums of Squares.** A final project of interest for me relates to the notion of the relationship between nonnegativity and sums of squares. Hilbert’s 17th problem asks whether a polynomial \(f(x_1, \ldots, x_n) \in \mathbb{R}[x_1, \ldots, x_n] \) which satisfies \(f(x_1, \ldots, x_n) \geq 0 \) for all \(x_1, \ldots, x_n \in \mathbb{R} \) can be written as a sum of any number of squares. It turns out that not every nonnegative polynomial can be written as a sum of squares of other polynomials, but it is possible for every nonnegative polynomial to be expressed as a sum of squares of rational functions with coefficients in \(\mathbb{R} \) (see [2]).

The condition that \(f \in \mathbb{R}[x_1, \ldots, x_n] \) can be written as a sum of squares of rational functions is equivalent to the statement that there exist \(g, f_1, \ldots, f_k \in \mathbb{R}[x_1, \ldots, x_n] \) so that

\[
g^2f = f_1^2 + \cdots + f_k^2.
\]

Here, \(g, f_1, \ldots, f_k \) serve as “certificates of nonnegativity” because their existence guarantees that \(f \) is nonnegative. In [9], Lombardi, Perrucci, and Roy show that not only do such \(g \) and \(f_i \) exist, but moreover, the degree of each \(g \) and \(f_i \) is bounded by

\[
2^{2\deg(f)^4n}.
\]

Lombardi, Perrucci, and Roy do not prove bounds on \(k \) nor on the sizes of the coefficients of \(g \) and \(f_i \). I would like to explore their methods to see if I can find such bounds. If such bounds were obtained and if one could work over \(\mathbb{Z} \) or \(\mathbb{Q} \) rather than \(\mathbb{R} \), we would have a naïve algorithm for checking whether a polynomial with integer coefficients is nonnegative: run through all of the combinations of polynomials \(g, f_1, \ldots, f_k \) with degrees and coefficients appropriately bounded (of
which there are finitely many) and check to see whether or not $g^2 f = f_1^2 + \cdots + f_k^2$. If yes, we note that f is nonnegative. If no, then f is not nonnegative.

4. Conclusion

I am interested in continuing to research mathematics using tools to analyze complexity. I would be happy to continue my work on bounding the number of solutions to Thue equations; I would enjoy working on any of the other problems listed in this statement, like bounding the heights of bases of number fields, finding proofs of low theoretical complexity, and bounding the complexity of certificates of nonnegativity; and I would enjoy working on new problems to which I can bring the tools I have developed in the course of my PhD.

References