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1. Introduction

I am currently a number theorist who is also also interested in logic and computation. The major
theme that runs throughout my research is the utility of complexity: by measuring the complexity
of different mathematical objects (rational numbers, polynomials, proofs, etc.), we can find useful
bounds on the number and types of solutions to classical problems.

My most recent work concerns bounding the number of solutions to certain Diophantine equations
by relating those solutions to rational approximations of algebraic numbers. My results are both
asymptotic (depending on certain parameters constraining the type of Diophantine equation under
examination) and explicit (when those parameters are fixed, I find bounds on the implicit constants
involved in the asymptotic estimates). My PhD dissertation will include these bounds along with
auxiliary bounds about the distances between roots of polynomials with integer coefficients.

My master’s thesis explored the provability of Minkowski’s Linear Forms Theorem (a founda-
tional theorem in the branch of number theory known as the geometry of numbers) in the sys-
tem of first-order arithmetic known as Elementary Function Arithmetic (a set of axioms which
is much weaker than the standard Zermelo-Fraenkel set theory axioms under which we typically
work). I maintain active interest in this and similar projects, like decidability problems. For in-
stance, is there an algorithm which, on input f(x1, . . . , xn) ∈ Q[x1, . . . , xn], decides whether or not
f(x1, . . . , xn) > 0 for all x1, . . . , xn ∈ Q?

In this statement, I will describe my current work on and my future plans for improving the
bounds on the number of solutions to Thue’s Inequality and I will follow that up with descriptions
of my interests in other projects in number theory, logic, and analysis.

2. Thue’s Inequality

2.1. Current Work. My thesis project concerns the following problem about solutions to a poly-
nomial inequality. Let F (x, y) be an irreducible integral binary form (meaning that F (x, y) is a
homogeneous polynomial in two variables and has integer coefficients) of degree n > 3. Let h ∈ Z>0.
The main motivating question of my research is: how many solutions are there to the inequality

|F (x, y)| 6 h (1)

for x, y ∈ Z? It is not obvious that there are only finitely many, though Thue proved this in 1909
in [20], resulting in the inequality (1) being named Thue’s inequality.

Mahler later (1933) gave upper bounds on the number of integer-pair solutions to (1) by consid-
ering the problem geometrically. He noted that by taking x and y to be real variables rather than
integer variables, the inequality |F (x, y)| 6 h corresponds to a region of the xy-plane, like in figure
1.

Mahler’s insight was to use intuition from the geometry of numbers, which indicates that the
number of integer-pair solutions to (1) should be approximately equal to the volume of the region
bounded by the curve |F (x, y)| = h. A quick change of variables relates the volume of the region
bounded by the curve |F (x, y)| = h to the volume of the region bounded by the curve |F (x, y)| = 1
and in [11], Mahler gives an upper bound for the volume of the region bounded by |F (x, y)| = 1.
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Figure 1. |x5 + 3x4y − y5| = 10000

Consequently, when counting the number of solutions to (1), it typically suffices to count the number
of integer pair solutions to

|F (x, y)| = 1. (2)

In my thesis, I improve both asymptotic and explicit upper bounds on the number of solutions
to (1) and (2) in particular contexts. Before stating these results, however, we need to take note
of Siegel’s observation in [17] that the number of nonzero summands in F (x, y) should play an
important role in the number of solutions to (1). Roughly speaking, this is because solutions (p, q)
to (2) correspond to good rational approximations p

q of roots of f(Z) := F (Z, 1). Rational numbers

cannot approximate the properly complex roots of f(Z) very well, so the number of solutions to
(2) should be controlled by the number of real roots of f(Z), which is in turn controlled by the
number of nonzero summands in f(Z) (see Lemma 1 in [16]). To that end, suppose that F (x, y) is
the sum of s+ 1 nonzero monomials.1

Note that the correspondence between solutions, (p, q), and rational numbers, p
q , is only one-to-

one if gcd(p, q) is guaranteed to be 1. This is guaranteed for solutions to (2), but is not guaranteed
for solutions to (1). To handle this situation, we say that a solution to (1) is primitive if gcd(p, q) = 1
and we first count only primitive solutions to (1). We can than compute bounds on the total number
of solutions from bounds on the number of primitive solutions using partial summation methods
as in [12].

2.1.1. Results. My asymptotic result stems from an approach to this problem initiated by Mueller
and Schmidt in the 1980s, the major ideas of which are contained in [12]. They classify each solution
as being large, medium, or small, and they use different techniques to find upper bounds on the
number of each different type of solution. Mueller and Schmidt find an excellent upper bound on
the number of large solutions, but conjecture that their bounds for the number of medium and
small solutions can be improved. My first result improves the bounds on the number of medium
solutions to inequality (1).

Theorem 2.1 (K., 2021). Let F (x, y) be an irreducible, integral binary form of degree n > 3.
Suppose that F (x, y) is the sum of exactly s+ 1 nonzero monomials and that n > 3s. Let H denote
the maximum of the absolute values of the coefficients of F . Let NM (F, h) denote the number of

1The use of s + 1 rather than s to denote the number of nonzero summands is a standard convention, loosely
because this use of s is properly analogous to the degree, n. A degree n polynomial can have at most n + 1 nonzero
summands, so we use s + 1 to denote the number of nonzero summands. Moreover, by using s in this way, s must
live in the interval [1, n], whereas the number of nonzero summands must live in the less “natural” interval [2, n+ 1].
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primitive, medium solutions to (1). Then

NM (F, h)� s

(
1 + log

(
s+

log h

max(1, logH)

))
.

This result is an improvement on Bengoechea’s result in [4] (both in the sense that my definition
of a “medium” solution is broader than that in [4] and in the sense that my upper bounds are
smaller by a factor of s in some cases and log s in others) and the methods which lead to this result
give a fundamentally different proof of the same bound on the number of medium solutions that
can be found in a paper of Akhtari and Bengoechea [1].

My explicit result comes in a more specific context. In 2000 in [19], Thomas is able to show that
when F (x, y) is an irreducible, integral binary form of degree n > 6 which is a trinomial (fix s = 2,
meaning F (x, y) = axn + bxkyn−k + cyn for some a, b, c, k, n ∈ Z with 0 < k < n), then there are no
more than 8w(n) + 8 integer pair solutions to (2) where w(n) is piecewise defined by the following
table:

n 6 7 8 9 10–11 12–16 17–37 > 38
w(n) 16 13 11 9 8 7 6 5

Note that solutions to (2) are automatically primitive, so there is no need to add that hypothesis.
In my thesis, I use a mixture of theoretical techniques and Python code to show that w(n) can be
improved as follows:

Theorem 2.2 (K., [9]). The function w(n) in Thomas’ result can be replaced by z(n), defined with
the following table.

n 6 7 8 9 10–11 12–16 17–38 39–218 > 219
z(n) 15 12 11 9 8 7 6 5 4

It is worth noting that 4 is the best possible value that could be obtained for z(n) using any
approach analogous to Thomas’, though it remains possible that z(n) could be reduced to 4 for
values of n less than 219.

2.1.2. Methods. Both of these theorems result from improvements I made to a counting technique
based on what is called the gap principle. The gap principle is not a specific theorem, but rather
the general notion that “large enough” solutions to (2) should be “exponentially far apart.” This
notion relies on the previously stated correspondence between primitive solutions to (2) and good
rational approximations of F (Z, 1). A typical result looks roughly like this: if (p, q) is a primitive

solution to (2), then there exists a root α of f(Z) := F (Z, 1) so that
∣∣∣pq − α∣∣∣ < K

qr (for some specific

values of K and r which depend on F ).
Now we can show that solutions which produce good rational approximations to the same root of

f(Z) must be far apart. Suppose that (p, q) and (p′, q′) are distinct solutions to (2) with q′ > q > 0

and so that p
q and p′

q′ are both close to the same root, α, of f(Z) in the sense of the previous

paragraph. Then by the fact that∣∣∣∣pq − α
∣∣∣∣ < K

qr
and

∣∣∣∣p′q′ − α
∣∣∣∣ < K

(q′)r
,

the triangle inequality allows us to conclude that∣∣∣∣pq − p′

q′

∣∣∣∣ < 2K

qr
.

A little bit of additional estimation shows that

1

qq′
<

2K

qr
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and rearranging this inequality yields q′ > qr−1

2K . This is the essence of the gap principle: by starting

with only the assumptions that q′ > q and that p
q and p′

q′ are good approximations of the same

irrational number, one can find that there actually an exponential gap between q′ and q.
This exponential gap can help quantify the maximum number of such q that can live between

two fixed quantities. My results are largely a function of discovering sharp upper bounds for that
maximum.

2.2. Future Work. I have several ideas for future work that could be done on the topic of Thue
inequalities. In order to find better bounds on the total number of solutions to (1), we must find
better bounds on the number of small solutions to (1). This is an extremely broad goal, however.
Concretely, there are a number of observations I have made in the literature that could lead to
improvements in these bounds.

First, Akhtari and Bengoechea in [1] make major improvements to the bounds on the number
of small solutions under the assumption that h is small relative to the discriminant of F . I would
like to explore their techniques to see if their work can be modified to allow for improvements in
general or in other settings (say, if h is small relative to the sizes of the coefficients of F to fit into
a conjecture of Mueller and Schmidt in [12]).

In [19], Thomas uses a novel approach to counting solutions to (2) when F is a trinomial.
Grundman and Wisniewski extend this approach to tetranomials in [6] and I would like to explore
whether this approach can be further extended to arbitrary binary forms.

Moreover, I believe that both Thomas’ ([19]) and Grundman and Wisniewski’s ([6]) work can
be improved by the following means. Both papers appeal to a result of Bombieri and Schmidt
in [5] generalizing the Thue-Siegel method. Bombieri and Schmidt’s result, however, is based off
of a different approximation philosophy and a different approximation result than what is found
in Thomas’ or Grundman and Wisniewski’s papers. By integrating Thomas’ or Grundman and
Wisniewski’s approximation result into Bombieri and Schmidt’s general method, I believe that
both Thomas’ and Grundman and Wisniewski’s results could be further improved.

Finally, it is worth noting that foundational papers on Thue’s Inequality did not have access to
the hindsight that we now have. For instance, Bombieri and Schmidt’s paper [5] on the Thue-Siegel
method does not keep track of the number of nonzero coefficients of F (x, y). It would be worthwhile
to update Bombieri and Schmidt’s results to account for this additional parameter.

3. Other Areas of Interest

3.1. The Weil Height. Of additional interest to me is the theory of height functions. The Weil
height on Q can be generalized to a height function (which I will still call the Weil height) on Pm(Q)
which still enjoys the Northcott property. For any number field, K of degree n, one might consider
the behavior of the Weil height on Q-bases of K, thought of as points in Pn−1(K) by treating the
basis α1, . . . , αn as the point (α1 : · · · : αn). Since the Weil height has the Northcott property, there
exists a Q-basis of K of minimal height. Let B(K) denote the minimal height of any basis of K.2

Conjecturally, B(K) is close to |∆K |1/2 (up to a constant factor depending on n = [K : Q]),

where ∆K is the discriminant of K. In [18], Silverman shows that B(K)�n |∆K |1/2. In [14], Roy

and Thunder show that for any ε > 0, B(K)�n,ε R(K)1−ε|∆K |
1
2
+2ε where R(K) is the regulator

of K. In the quadratic imaginary case, they actually construct such a basis. In [15], Ruppert shows

(non-constructively) for quadratic K that B(K)� |∆K |1/2.
Computing B(K) for different fields K is repetitive and tedious, so I expect that these compu-

tations could be carried out effectively with a computer. I would like to encode Roy and Thunder’s
construction for quadratic fields, constructively compute B(K) for a large number of quadratic K,
then see if this provides insight into finding a constructive proof of Ruppert’s result.

2In this section, I am conflating the Weil height with an appropriate normalization of the Weil height for simplicity.
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Moreover, I expect that this problem is easier when OK is monogenic since |∆K | relates nicely
to a power basis for K and the question of basis height can then be connected to the question of
whether or not number fields have defining elements of small height. The monogeneity condition is
more manageable when the defining polynomial of K has few coefficients (see [7] for instance) and
so as a first step, it might be worth looking at B(K) under the condition that K is defined by a
binomial or trinomial and OK is monogenic.

3.2. Elementary Function Arithmetic. Philosophically, the question of what makes a good
proof has always intrigued mathematicians. A plausible (though not indisputable) answer to this
question is that the best proof of a theorem is the simplest—the one that uses the fewest assump-
tions. This motivates the main question in the field of reverse mathematics: how many assumptions
are needed to prove a given theorem? More precisely, given any theorem, can it be proven from a
simple set of axioms? If so, how simple?

One such candidate for a simple axiom scheme is that of Peano Arithmetic. The axioms of Peano
Arithmetic describe the arithmetic of the natural numbers: how to add, multiply, and exponentiate
numbers, together with a scheme of induction which allows you to prove theorems from inductive
techniques in addition to the deductive logical rules that are always available to mathematicians.
Of more interest for technical reasons is the axiom scheme of Elementary Function Arithmetic
(EFA), which has somewhat fewer axioms than Peano Arithmetic, but functions similarly.

Given that EFA appears to have much to say about the natural numbers and little to say about
sets, it may be surprising to learn that much of modern mathematics can be derived from the
axioms of EFA. One can work with much or all of finite dimensional linear algebra, the theory of
finite groups, and even some analysis (see page 271 of [3]). Colin McLarty is working on number
field theory in EFA and to that end, I tried to prove Minkowski’s Linear Forms Theorem from the
axioms of EFA for my master’s thesis. I was able to show in [8] that conditional on my definition
of the volume of a convex polytope being well-defined in EFA, Minkowski’s Linear Forms Theorem
follows from the axioms of EFA.

I am currently collaborating with a graduate student at Montana State University to show the
well-definedness of volume. Future work for this project might include showing that a result of
Raghavan in [13] follows from the axioms of EFA and that hence, the number field property of
“having an embedding into R” can be defined in EFA.

3.3. Nonnegativity and Sums of Squares. A final project of interest for me concerns the
relationship between nonnegativity and sums of squares. Hilbert’s 17th problem asks whether a
polynomial f(x1, . . . , xn) ∈ R[x1, . . . , xn] which satisfies f(x1, . . . , xn) > 0 for all x1, . . . , xn ∈ R can
be written as a sum of any number of squares. It turns out that not every nonnegative polynomial
can be written as a sum of squares of other polynomials, but it is possible for every nonnegative
polynomial to be expressed as a sum of squares of rational functions with coefficients in R (see [2]).

The condition that f ∈ R[x1, . . . , xn] can be written as a sum of squares of rational functions is
equivalent to the statement that there exist g, f1, . . . , fk ∈ R[x1, . . . , xn] so that

g2f = f21 + · · ·+ f2k .

Here, g, f1, . . . , fk serve as “certificates of nonnegativity” because their existence guarantees that
f is nonnegative. In [10], Lombardi, Perrucci, and Roy show that not only do such g and fi exist,
but moreover, the degree of each g and fi is bounded by

22
2deg(f)

4n

.

Lombardi, Perrucci, and Roy do not prove bounds on k nor on the sizes of the coefficients of
g and fi. I would like to explore their methods to see if I can find such bounds. If such bounds
were obtained and if one could work over Z or Q rather than R, we would have a näıve algorithm
for checking whether a polynomial with integer coefficients is nonnegative: run through all of the
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combinations of polynomials g, f1, . . . , fk with degrees and coefficients appropriately bounded (of
which there are finitely many) and check to see whether or not g2f = f21 + · · ·+ f2k . If yes, we note
that f is nonnegative. If no, then f is not nonnegative.
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