Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

7 February 2023
Department of Mathematics
University of Oregon

Setup

Bounds on the
Number of Solutions to Thue＇s Inequality

Greg Knapp

Thue＇s
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solutio
Iypes
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Iypes
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Setup

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solitions In Total

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

Setup

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F

Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F

■ Example: $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F
- Example: $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$
- $n=6$

Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F
- Example: $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$
- $n=6$
- $s=3$

Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F
- Example: $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$
- $n=6$
- $s=3$
- $H=10$

Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Binomials and Trinomials

Ingredients

■ Let $F(x, y) \in \mathbb{Z}[x, y]$ be irreducible and homogeneous of degree $\geqslant 3$.

- Set $n=\operatorname{deg}(F)$
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F
- Example: $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$
- $n=6$
- $s=3$
- $H=10$
- Let $h \in \mathbb{Z}_{>0}$

Foundational Result

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Ngebra

Results

Counting

Techniques

Different Solution lypes
Large Solutions
Medium Solutions
Small Solutions
In Total

Theorem (Thue, 1909)
$|F(x, y)| \leqslant h$ (known as Thue's Inequality) has finitely many integer pair solutions

Foundational Result

Theorem (Thue, 1909)

$|F(x, y)| \leqslant h$ (known as Thue's Inequality) has finitely many integer pair solutions

Necessity of Hypotheses

- $\operatorname{deg}(F) \geqslant 3$ is necessary: if $d \in \mathbb{Z}_{>0}$ is not a square, then $F(x, y)=x^{2}-d y^{2}$ is irreducible and homogeneous, and $|F(x, y)| \leqslant 1$ has infinitely many integer-pair solutions

Foundational Result

Theorem (Thue, 1909)

$|F(x, y)| \leqslant h$ (known as Thue's Inequality) has finitely many integer pair solutions

Necessity of Hypotheses

- $\operatorname{deg}(F) \geqslant 3$ is necessary: if $d \in \mathbb{Z}_{>0}$ is not a square, then $F(x, y)=x^{2}-d y^{2}$ is irreducible and homogeneous, and $|F(x, y)| \leqslant 1$ has infinitely many integer-pair solutions
- $F(x, y)$ being irreducible is also necessary: if $F(x, y)$ has a linear factor, say $m x-n y$, then any integer multiple of (n, m) is a solution to $|F(x, y)| \leqslant h$

Foundational Result

Thue's

Theorem (Thue, 1909)

$|F(x, y)| \leqslant h$ (known as Thue's Inequality) has finitely many integer pair solutions

Necessity of Hypotheses

- $\operatorname{deg}(F) \geqslant 3$ is necessary: if $d \in \mathbb{Z}_{>0}$ is not a square, then $F(x, y)=x^{2}-d y^{2}$ is irreducible and homogeneous, and $|F(x, y)| \leqslant 1$ has infinitely many integer-pair solutions
- $F(x, y)$ being irreducible is also necessary: if $F(x, y)$ has a linear factor, say $m x-n y$, then any integer multiple of (n, m) is a solution to $|F(x, y)| \leqslant h$
- The homogeneity condition is also necessary: if $F(x, y)=x^{6}+y^{3}$, then any integer pair of the form $\left(n,-n^{2}\right)$ will be a solution to $|F(x, y)| \leqslant h$

Follow-Up Questions

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra

Results

Counting

Techniques

Different Solution lypes
Large Solutions
Medium Solutions Small Solutions In Total

Theorem (Thue, 1909)
$|F(x, y)| \leqslant h$ (known as Thue's Inequality) has finitely many
integer pair solutions

Follow-Up Questions

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Theorem (Thue, 1909)

$$
\begin{aligned}
& |F(x, y)| \leqslant h \text { (known as Thue's Inequality) has finitely many } \\
& \text { integer pair solutions }
\end{aligned}
$$

Questions

■ How many solutions are there?

Follow-Up Questions

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Theorem (Thue, 1909)
$|F(x, y)| \leqslant h$ (known as Thue's Inequality) has finitely many integer pair solutions

Questions

- How many solutions are there?

■ On which properties of F does the number of solutions depend?

Follow-Up Questions

Theorem (Thue, 1909)
$|F(x, y)| \leqslant h$ (known as Thue's Inequality) has finitely many integer pair solutions

Questions

- How many solutions are there?

■ On which properties of F does the number of solutions depend?

Approaches

1 Geometric
2 Algebraic

Changing Variables

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solution

Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Changing Variables

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction
Geometry Agebra Results

Counting

Techniques

Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total
"Eliminating" h
Observe that $\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant h$ if and only if

$$
\left|\left(\frac{x}{h^{1 / 5}}\right)^{5}+3\left(\frac{x}{h^{1 / 5}}\right)^{4}\left(\frac{y}{h^{1 / 5}}\right)-\left(\frac{y}{h^{1 / 5}}\right)^{5}\right| \leqslant 1
$$

Changing Variables

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials Binomials Trinomials

"Eliminating" h

Observe that $\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant h$ if and only if

$$
\left|\left(\frac{x}{h^{1 / 5}}\right)^{5}+3\left(\frac{x}{h^{1 / 5}}\right)^{4}\left(\frac{y}{h^{1 / 5}}\right)-\left(\frac{y}{h^{1 / 5}}\right)^{5}\right| \leqslant 1
$$

Fact

$$
|F(x, y)| \leqslant h \text { if and only if }
$$

$$
\left|F\left(\frac{x}{h^{1 / n}}, \frac{y}{h^{1 / n}}\right)\right| \leqslant 1
$$

Changing Variables

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solution

Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Changing Variables

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total
"Eliminating" y
Observe that $\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant h$ with $y>0$ if and only if

$$
\left|\left(\frac{x}{y}\right)^{5}+3\left(\frac{x}{y}\right)^{4}-1\right| \leqslant \frac{h}{y^{5}}
$$

Changing Variables

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction
Geometry

"Eliminating" y

Observe that $\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant h$ with $y>0$ if and only if

$$
\left|\left(\frac{x}{y}\right)^{5}+3\left(\frac{x}{y}\right)^{4}-1\right| \leqslant \frac{h}{y^{5}}
$$

Fact

$$
\begin{aligned}
& |F(x, y)| \leqslant h \text { and } y>0 \text { if and only if } \\
& \qquad\left|F\left(\frac{x}{y}, 1\right)\right| \leqslant \frac{h}{y^{n}}
\end{aligned}
$$

An Effective Algorithm

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solutior

lypes
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

An Effective Algorithm

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra

Results

Counting

Techniques

Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Theorem (Baker, 1968)
Suppose that $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

An Effective Algorithm

Bounds on the
Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large solutions

Theorem (Baker, 1968)

Suppose that $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} e^{(\log h)^{\kappa}}=C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} e^{(\log h)^{\kappa}}=C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} e^{(\log h)^{\kappa}}=C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:

- Choose a $\kappa>n$

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} e^{(\log h)^{\kappa}}=C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:

- Choose a $\kappa>n$
- Compute $C_{F, \kappa}$

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} e^{(\log h)^{\kappa}}=C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:

- Choose a $\kappa>n$
- Compute $C_{F, \kappa}$
- Test all pairs $(x, y) \in \mathbb{Z}^{2}$ satisfying $\max (|x|,|y|) \leqslant C_{F, \kappa} e^{(\log h)^{\kappa}}$ to see if $|F(x, y)| \leqslant h$

An Effective Algorithm

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Theorem (Baker, 1968)

Any pair $x, y \in \mathbb{Z}$ satisfying $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F} h^{(\log h)^{n}}
$$

An Effective Algorithm

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types Large Solutions Medium Solutions Small Solutions In Total

Theorem (Baker, 1968)

Any pair $x, y \in \mathbb{Z}$ satisfying $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F} h^{(\log h)^{n}}
$$

How Many Solutions?

■ Define $N(F, h):=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)| \leqslant h\right\}$

An Effective Algorithm

Theorem (Baker, 1968)

Any pair $x, y \in \mathbb{Z}$ satisfying $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F} h^{(\log h)^{n}}
$$

How Many Solutions?

■ Define $N(F, h):=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)| \leqslant h\right\}$

- Baker's theorem immediately gives

$$
N(F, h) \leqslant\left(2 C_{F} h^{(\log h)^{n}}+1\right)^{2} \asymp_{F} h^{2(\log h)^{n}}
$$

An Effective Algorithm

Question

Is this what the growth rate of $N(F, h)$ actually looks like?

An Example

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Iypes
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

An Example

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Some Data

Consider $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$.

An Example

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra

Results

Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials Binomials Trinomials

Some Data

Consider $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$. We have the following table comparing h and $N(F, h)$:

An Example

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry

Some Data

Consider $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$. We have the following table comparing h and $N(F, h)$:

h	1	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}
$N(F, h)$	3	5	15	27	51	121	257	541

An Example

Some Data

Consider $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$. We have the following table comparing h and $N(F, h)$:

h	1	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}
$N(F, h)$	3	5	15	27	51	121	257	541

A Conjecture

As h increases by a factor of $10, N(F, h)$ increases by a factor of roughly 2.1.

An Example

Some Data

Consider $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$. We have the following table comparing h and $N(F, h)$:

h	1	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}
$N(F, h)$	3	5	15	27	51	121	257	541

A Conjecture

As h increases by a factor of $10, N(F, h)$ increases by a factor of roughly 2.1. So $N(F, h)$ should have the form

$$
k \cdot h^{\log _{10} 2.1} \approx k \cdot h^{0.32}
$$

An Example

Some Data

Consider $F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$. We have the following table comparing h and $N(F, h)$:

h	1	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}
$N(F, h)$	3	5	15	27	51	121	257	541

A Conjecture

As h increases by a factor of $10, N(F, h)$ increases by a factor of roughly 2.1. So $N(F, h)$ should have the form

$$
k \cdot h^{\log _{10} 2.1} \approx k \cdot h^{0.32}
$$

Note that $h^{0.32}$ grows much slower than $h^{2(\log h)^{6}}$

Visualizing Thue's Inequality

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solution

Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Visualizing Thue's Inequality

Bounds on the
Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solitions
Medium Solutions
Small Solitions
In Total

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

Visualizing Thue's Inequality

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Somitions
Medium Solutions
Small Solutions
In Total

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

$$
\left|x^{5}+3 x^{4} y-y^{5}\right|=1 \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{2} \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{4}
$$

Visualizing Thue's Inequality

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions
Medium Solutions
Small Solutions In Total

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

$\left|x^{5}+3 x^{4} y-y^{5}\right|=1 \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{2} \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{4}$

$$
N(F, h)=\text { number of lattice points "inside" }|F(x, y)| \leqslant h
$$

Visualizing Thue's Inequality

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Binomials and Trinomials Binomials Trinomials

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

$\left|x^{5}+3 x^{4} y-y^{5}\right|=1 \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{2} \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{4}$

$$
\begin{aligned}
N(F, h) & =\text { number of lattice points "inside" }|F(x, y)| \leqslant h \\
& \approx \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\}
\end{aligned}
$$

Visualizing Thue's Inequality

Bounds on the

Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Binomials and Trinomials Binomials Trinomials

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

$\left|x^{5}+3 x^{4} y-y^{5}\right|=1 \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{2} \quad\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{4}$

$$
\begin{aligned}
N(F, h) & =\text { number of lattice points "inside" }|F(x, y)| \leqslant h \\
& \approx \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =: V(F, h)
\end{aligned}
$$

Exploring dependence on h

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

$$
V(F, h)=\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\}
$$

Volume

In general

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Exploring dependence on h

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions

Volume

In general

$$
\begin{aligned}
V(F, h) & =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(\frac{x}{h^{1 / n}}, \frac{y}{h^{1 / n}}\right)\right| \leqslant 1\right\}
\end{aligned}
$$

Exploring dependence on h

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions

Volume

In general

$$
\begin{aligned}
V(F, h) & =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(\frac{x}{h^{1 / n}}, \frac{y}{h^{1 / n}}\right)\right| \leqslant 1\right\} \\
& =\operatorname{vol}\left\{\left(h^{1 / n} x, h^{1 / n} y\right) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\}
\end{aligned}
$$

Exploring dependence on h

Bounds on the
Number of
Solutions to
Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions

Volume

In general

$$
\begin{aligned}
V(F, h) & =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(\frac{x}{h^{1 / n}}, \frac{y}{h^{1 / n}}\right)\right| \leqslant 1\right\} \\
& =\operatorname{vol}\left\{\left(h^{1 / n} x, h^{1 / n} y\right) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\} \\
& =h^{2 / n} \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\}
\end{aligned}
$$

Exploring dependence on h

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions

Volume

In general

$$
\begin{aligned}
V(F, h) & =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(\frac{x}{h^{1 / n}}, \frac{y}{h^{1 / n}}\right)\right| \leqslant 1\right\} \\
& =\operatorname{vol}\left\{\left(h^{1 / n} x, h^{1 / n} y\right) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\} \\
& =h^{2 / n} \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\} \\
& =h^{2 / n} V(F, 1)
\end{aligned}
$$

Exploring dependence on h

Volume

In general

$$
\begin{aligned}
V(F, h) & =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(\frac{x}{h^{1 / n}}, \frac{y}{h^{1 / n}}\right)\right| \leqslant 1\right\} \\
& =\operatorname{vol}\left\{\left(h^{1 / n} x, h^{1 / n} y\right) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\} \\
& =h^{2 / n} \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\} \\
& =h^{2 / n} V(F, 1)
\end{aligned}
$$

Implication

Since $N(F, h) \approx V(F, h)=h^{2 / n} V(F, 1)$, it would make sense if $N(F, h) \approx h^{2 / n} \cdot C_{F}$ where C_{F} is a constant depending only on F

Exploring dependence on h

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solutior

Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Exploring dependence on h

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Theorem (Mahler, 1934)
For any $F \in \mathbb{Z}[x, y]$ irreducible and homogeneous of degree $n \geqslant 3$, there exists a constant $C(F)$ so that

$$
|N(F, h)-V(F, h)| \leqslant C(F) \cdot h^{\frac{1}{n-1}}
$$

Exploring dependence on h

Bounds on the

Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types

Theorem (Mahler, 1934)

For any $F \in \mathbb{Z}[x, y]$ irreducible and homogeneous of degree $n \geqslant 3$, there exists a constant $C(F)$ so that

$$
|N(F, h)-V(F, h)| \leqslant C(F) \cdot h^{\frac{1}{n-1}}
$$

Corollary

$$
h^{-2 / n} N(F, h)=V(F, 1)+O_{F}\left(h^{-\frac{1}{n+3}}\right)
$$

$$
\text { i.e. } N(F, h)=O_{F}\left(h^{2 / n}\right)
$$

Confirming Our Hypothesis

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solutio

Types
Large Solutions
Merlum Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Confirming Our Hypothesis

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
mirouluct
Geometry
Algebre
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Example

Recall our previous example:
$F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

Confirming Our Hypothesis

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Alochera
Results

Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Example

Recall our previous example:
$F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

Conjecture

$N(F, h) \approx k h^{0.32}$

Confirming Our Hypothesis

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Example

Recall our previous example:
$F(x, y)=x^{6}-3 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

Conjecture

$N(F, h) \approx k h^{0.32}$

From Mahler's Theorem

$$
N(F, h) \approx k h^{2 / 6}
$$

The "Long Tendrils"

Bounds on the Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution 1ypes
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Some Pictures

Recall that we had the previous pictures:

$\left|x^{5}+3 x^{4} y-y^{5}\right|=1$
$\left|x^{5}+3 x^{4} y-y^{5}\right|=100$

$\left|x^{5}+3 x^{4} y-y^{5}\right|=10^{4}$

Question

What's the deal with the linear parts?

A Connection to \mathbb{Q}

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Translating to One Variable

A Connection to \mathbb{Q}

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions
Medium Solution:
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$

A Connection to \mathbb{Q}

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solutior Types
Large Solutions
Medium Solutions Small Solutions In Total

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$

A Connection to \mathbb{Q}

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$

■ Set $f(X)=F(X, 1)$

A Connection to \mathbb{Q}

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometo
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$
- Set $f(X)=F(X, 1)$

■ Factor f over $\mathbb{C}: f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$

A Connection to \mathbb{Q}

Bounds on the
Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types Large Solutions Medium Solutions Small Solutions In Total

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$
- Set $f(X)=F(X, 1)$
- Factor f over $\mathbb{C}: f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$
- $(p, q) \in \mathbb{Z}^{2}$ satisfies $F(p, q)= \pm 1$ if and only if $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$

A Connection to \mathbb{Q}

Bounds on the
Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$
- Set $f(X)=F(X, 1)$

■ Factor f over $\mathbb{C}: f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$

- $(p, q) \in \mathbb{Z}^{2}$ satisfies $F(p, q)= \pm 1$ if and only if $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$
- We want to find rationals $\frac{p}{q}$ where $\prod_{i=1}^{n}\left(\frac{p}{q}-\alpha_{i}\right)$ is small

A Connection to \mathbb{Q}

Bounds on the
Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$
- Set $f(X)=F(X, 1)$

■ Factor f over $\mathbb{C}: f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$

- $(p, q) \in \mathbb{Z}^{2}$ satisfies $F(p, q)= \pm 1$ if and only if $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$
- We want to find rationals $\frac{p}{q}$ where $\prod_{i=1}^{n}\left(\frac{p}{q}-\alpha_{i}\right)$ is small - i.e. $\frac{p}{q}$ is a good approximation of some root of f

A Connection to \mathbb{Q}

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$
- Set $f(X)=F(X, 1)$

■ Factor f over $\mathbb{C}: f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$

- $(p, q) \in \mathbb{Z}^{2}$ satisfies $F(p, q)= \pm 1$ if and only if $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$
- We want to find rationals $\frac{p}{q}$ where $\prod_{i=1}^{n}\left(\frac{p}{q}-\alpha_{i}\right)$ is small
- i.e. $\frac{p}{q}$ is a good approximation of some root of f
- Immediate: if $\prod_{i=1}^{n}\left|\frac{p}{q}-\alpha_{i}\right|=\frac{1}{q^{n}}$, then there exists i so that $\left|\frac{p}{q}-\alpha_{i}\right| \leqslant \frac{1}{q}$

A Connection to \mathbb{Q}

Translating to One Variable

- Consider $F(x, y)= \pm 1$ where $x, y \in \mathbb{Z}$
- This is equivalent to $F\left(\frac{x}{y}, 1\right)=\frac{ \pm 1}{y^{n}}$
- Set $f(X)=F(X, 1)$

■ Factor f over $\mathbb{C}: f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$

- $(p, q) \in \mathbb{Z}^{2}$ satisfies $F(p, q)= \pm 1$ if and only if $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$
- We want to find rationals $\frac{p}{q}$ where $\prod_{i=1}^{n}\left(\frac{p}{q}-\alpha_{i}\right)$ is small
- i.e. $\frac{p}{q}$ is a good approximation of some root of f
- Immediate: if $\prod_{i=1}^{n}\left|\frac{p}{q}-\alpha_{i}\right|=\frac{1}{q^{n}}$, then there exists i so that $\left|\frac{p}{q}-\alpha_{i}\right| \leqslant \frac{1}{q}$
- By symmetry, we could also count rational approximations to roots of $g(Y)=F(1, Y)$

Rational Numbers Correspond to Primitive Pairs

Bounds on the

Number of
Solutions to Thue's Inequality

Greg Knapp

Aside

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Rational Numbers Correspond to Primitive Pairs

Bounds on the Number of Solutions to Thue's Inequality

Aside

- Rational numbers $\frac{x}{y}$ are only in one-to-one correspondence with primitive pairs: $(x, y) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}(x, y)=1$

Rational Numbers Correspond to Primitive Pairs

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Aside

- Rational numbers $\frac{x}{y}$ are only in one-to-one correspondence with primitive pairs: $(x, y) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}(x, y)=1$
- All solutions to $|F(x, y)|=1$ are primitive, but not all solutions to $|F(x, y)| \leqslant h$ are necessarily primitive.

Rational Numbers Correspond to Primitive Pairs

Aside

- Rational numbers $\frac{x}{y}$ are only in one-to-one correspondence with primitive pairs: $(x, y) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}(x, y)=1$
- All solutions to $|F(x, y)|=1$ are primitive, but not all solutions to $|F(x, y)| \leqslant h$ are necessarily primitive.
■ We can connect primitive solution counts to total solution counts using partial summation methods.

Philosophy

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solution

Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Philosophy

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geomety
Algebra
Results

Counting Techniques
Different Solutio Types
Large Solutions
Medium Solution
Small Solutions
In Total
Binomials and Trinomials Binomials Trinomials

Principle

■ Rational numbers can only be good approximations to the real roots of f

Philosophy

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types Large Solutions Medium Solutions Small Solutions In Total

Principle

■ Rational numbers can only be good approximations to the real roots of f

The Long Tendrils

- Suppose that α is a real root of $f(X)=F(X, 1)$.

Philosophy

Principle

- Rational numbers can only be good approximations to the real roots of f

The Long Tendrils

- Suppose that α is a real root of $f(X)=F(X, 1)$.
- Suppose that $(x, y) \in \mathbb{R}^{2}$ lies on the line $Y=\frac{X}{\alpha}$

Philosophy

Principle

- Rational numbers can only be good approximations to the real roots of f

The Long Tendrils

- Suppose that α is a real root of $f(X)=F(X, 1)$.
- Suppose that $(x, y) \in \mathbb{R}^{2}$ lies on the line $Y=\frac{X}{\alpha}$
- Then $F(X, Y)=0$ if and only if $f\left(\frac{X}{Y}\right)=0$.

Philosophy

Principle

■ Rational numbers can only be good approximations to the real roots of f

The Long Tendrils

- Suppose that α is a real root of $f(X)=F(X, 1)$.
- Suppose that $(x, y) \in \mathbb{R}^{2}$ lies on the line $Y=\frac{X}{\alpha}$
- Then $F(X, Y)=0$ if and only if $f\left(\frac{X}{Y}\right)=0$.
- But $f\left(\frac{x}{y}\right)=f(\alpha)=0$, so $F(x, y)=0$.

Philosophy

Principle

- Rational numbers can only be good approximations to the real roots of f

The Long Tendrils

■ Suppose that α is a real root of $f(X)=F(X, 1)$.

- Suppose that $(x, y) \in \mathbb{R}^{2}$ lies on the line $Y=\frac{X}{\alpha}$
- Then $F(X, Y)=0$ if and only if $f\left(\frac{X}{Y}\right)=0$.
- But $f\left(\frac{x}{y}\right)=f(\alpha)=0$, so $F(x, y)=0$.
- Hence, the line $Y=\frac{X}{\alpha}$ is a subset of $\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\}$

Philosophy

Principle

- Rational numbers can only be good approximations to the real roots of f

The Long Tendrils

- Suppose that α is a real root of $f(X)=F(X, 1)$.
- Suppose that $(x, y) \in \mathbb{R}^{2}$ lies on the line $Y=\frac{X}{\alpha}$
- Then $F(X, Y)=0$ if and only if $f\left(\frac{X}{Y}\right)=0$.
- But $f\left(\frac{x}{y}\right)=f(\alpha)=0$, so $F(x, y)=0$.
- Hence, the line $Y=\frac{X}{\alpha}$ is a subset of $\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\}$
- Therefore, real roots α correspond with tendrils of slope $\frac{1}{\alpha}$

Example

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials

Trinomials

Let $F(x, y)=x^{5}+3 x^{4} y-y^{5}$

Example

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Let $F(x, y)=x^{5}+3 x^{4} y-y^{5}$
$f(x)=F(x, 1)=x^{5}+3 x^{4}-1$

Example

Bounds on the

Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Let $F(x, y)=x^{5}+3 x^{4} y-y^{5}$
$f(x)=F(x, 1)=x^{5}+3 x^{4}-1$
$f(x)$ has real roots $\alpha_{1} \approx-2.99, \alpha_{2} \approx-0.82$, and $\alpha_{3} \approx 0.72$.

Example

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials Binomials Trinomials

Let $F(x, y)=x^{5}+3 x^{4} y-y^{5}$
$f(x)=F(x, 1)=x^{5}+3 x^{4}-1$
$f(x)$ has real roots $\alpha_{1} \approx-2.99, \alpha_{2} \approx-0.82$, and $\alpha_{3} \approx 0.72$.

Counting Real Roots

```
Bounds on the
    Number of
    Solutions to
        Thue's
        Inequality
    Greg Knapp
Thue's
Inequality
Introduction
Geomety
Algebra
Counting
Techniques
Different Solutio
Types
Large Solutions
Medium Solution:
Small Solutions
In Total
Binomials and
Trinomials
Binomials
Trinomials
```


Question

How many real roots can a polynomial have?

Counting Real Roots

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results

Counting Techniques
Different Solutior Types Large Solutions Medium Solutions Small Solutions In Total

Question

How many real roots can a polynomial have?

Naïve Answer

If $g(x) \in \mathbb{R}[x]$ has degree n, then g has no more than n real roots.

Counting Real Roots

Question

How many real roots can a polynomial have?

Naïve Answer

If $g(x) \in \mathbb{R}[x]$ has degree n, then g has no more than n real roots.

Lemma (Schmidt, 1987)

Suppose $g(x) \in \mathbb{R}[x]$ has $s+1$ nonzero terms and $g(0) \neq 0$. Then g has no more than $2 s$ real roots.

Real Roots

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Real Roots

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometr
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions

Question

Is it enough to just consider the real roots of f ? Or do rational approximations of the complex roots contribute significantly?

Real Roots

Question

Is it enough to just consider the real roots of f ? Or do rational approximations of the complex roots contribute significantly?

Lemma (Mueller and Schmidt, 1987)
Let $f(z) \in \mathbb{C}[z]$ have degree n, roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, and $\leqslant s+1$ nonzero coefficients.

Real Roots

Question

Is it enough to just consider the real roots of f ? Or do rational approximations of the complex roots contribute significantly?

Lemma (Mueller and Schmidt, 1987)
Let $f(z) \in \mathbb{C}[z]$ have degree n, roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, and $\leqslant s+1$ nonzero coefficients. Then there is a set S of roots of f with $|S| \leqslant 6 s+4$

Real Roots

Question

Is it enough to just consider the real roots of f ? Or do rational approximations of the complex roots contribute significantly?

Lemma (Mueller and Schmidt, 1987)
Let $f(z) \in \mathbb{C}[z]$ have degree n, roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, and $\leqslant s+1$ nonzero coefficients. Then there is a set S of roots of f with $|S| \leqslant 6 s+4$ so that for any real x :

Real Roots

Question

Is it enough to just consider the real roots of f ? Or do rational approximations of the complex roots contribute significantly?

Lemma (Mueller and Schmidt, 1987)
Let $f(z) \in \mathbb{C}[z]$ have degree n, roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, and $\leqslant s+1$ nonzero coefficients. Then there is a set S of roots of f with $|S| \leqslant 6 s+4$ so that for any real x :

$$
\min _{\alpha \in S}|x-\alpha| \leqslant \exp \left(800 \log ^{3} n\right) \cdot \min _{1 \leqslant i \leqslant n}\left|x-\alpha_{i}\right|
$$

Real Roots

Question

Is it enough to just consider the real roots of f ? Or do rational approximations of the complex roots contribute significantly?

Lemma (Mueller and Schmidt, 1987)
Let $f(z) \in \mathbb{C}[z]$ have degree n, roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, and $\leqslant s+1$ nonzero coefficients. Then there is a set S of roots of f with $|S| \leqslant 6 s+4$ so that for any real x :

$$
\min _{\alpha \in S}|x-\alpha| \leqslant \exp \left(800 \log ^{3} n\right) \cdot \min _{1 \leqslant i \leqslant n}\left|x-\alpha_{i}\right|
$$

Answer

Maybe we need to consider some complex roots, but we only need to consider good approximations to $\ll s$ roots

Results

Bounds on the

Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solitions
Medium Solutions
Small Solutions
in Total
Binomials and Trinomials
Binomials
Trinomials
Heuristic

Results

Bounds on the
Number of
Solutions to Thue's Inequality

Heuristic

- If each root of f in our set of size $\ll s$ has a bounded number of good rational approximations, then there will be $\ll s$ rational numbers $\frac{p}{q}$ with $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$

Results

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Heuristic

- If each root of f in our set of size $\ll s$ has a bounded number of good rational approximations, then there will be $\ll s$ rational numbers $\frac{p}{q}$ with $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$
- i.e. $\ll s$ primitive solutions to $|F(x, y)|=1$

Results

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Heuristic

- If each root of f in our set of size $\ll s$ has a bounded number of good rational approximations, then there will be $\ll s$ rational numbers $\frac{p}{q}$ with $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$

■ i.e. $\ll s$ primitive solutions to $|F(x, y)|=1$

- Or $\ll s h^{2 / n}$ solutions to $|F(x, y)| \leqslant h$

Results

Heuristic

- If each root of f in our set of size $\ll s$ has a bounded number of good rational approximations, then there will be $\ll s$ rational numbers $\frac{p}{q}$ with $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$

■ i.e. $\ll s$ primitive solutions to $|F(x, y)|=1$
■ Or $\ll s h^{2 / n}$ solutions to $|F(x, y)| \leqslant h$

Theorem (Mueller and Schmidt, 1987)

The number of integer pair solutions to $|F(x, y)| \leqslant h$ is

$$
\ll s^{2} h^{2 / n}\left(1+\log h^{1 / n}\right)
$$

Results

Heuristic

- If each root of f in our set of size $\ll s$ has a bounded number of good rational approximations, then there will be $\ll s$ rational numbers $\frac{p}{q}$ with $f\left(\frac{p}{q}\right)=\frac{ \pm 1}{q^{n}}$

■ i.e. $\ll s$ primitive solutions to $|F(x, y)|=1$
■ Or $\ll s h^{2 / n}$ solutions to $|F(x, y)| \leqslant h$

Counting
Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Binomials and Trinomials

Conjecture (Mueller and Schmidt, 1987)
s^{2} can be replaced by s and $\left(1+\log h^{1 / n}\right)$ is unnecessary.

Small h (binomials)

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction Geometry

Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Conjecture (Mueller and Schmidt, 1987)

Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$,

Small h (binomials)

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Conjecture (Mueller and Schmidt, 1987)

Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$.

Small h (binomials)

Conjecture (Mueller and Schmidt, 1987)

Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$.

Theorem (Mueller, 1986)

The number of positive, primitive solutions of $\left|a x^{n}-b y^{n}\right| \leqslant h$ (this is the case of $s=1$) when $h \leqslant H^{1-\frac{1}{n}-\rho}$ is $\ll K(\rho)$.

Small h (binomials)

Conjecture (Mueller and Schmidt, 1987)

Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$.

Theorem (Mueller, 1986)

The number of positive, primitive solutions of $\left|a x^{n}-b y^{n}\right| \leqslant h$ (this is the case of $s=1$) when $h \leqslant H^{1-\frac{1}{n}-\rho}$ is $\ll K(\rho)$.

Theorem (Bennett, 2001)

$a x^{n}-b y^{n}=1$ has at most one solution in positive integers x and y.

Small h (trinomials)

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Conjecture (Mueller and Schmidt, 1987)

Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$

Small h (trinomials)

Conjecture (Mueller and Schmidt, 1987)

Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$

Theorem (Mueller and Schmidt, 1987)

For F a trinomial $(s=2)$, the number of positive primitive solutions of $|F(x, y)| \leqslant h$ when $h \leqslant H^{1-\frac{2}{n}-\rho}$ is $\ll K^{\prime}(\rho)$

Small h (trinomials)

Conjecture (Mueller and Schmidt, 1987)

Let H be the maximal absolute value of the coefficients of F.
Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$

Theorem (Mueller and Schmidt, 1987)

For F a trinomial $(s=2)$, the number of positive primitive solutions of $|F(x, y)| \leqslant h$ when $h \leqslant H^{1-\frac{2}{n}-\rho}$ is $\ll K^{\prime}(\rho)$

Theorem (Thomas, 2000)

For $n \geqslant 39$ and F a trinomial, the number of solutions to $|F(x, y)|=1$ is less than or equal to 48.

Small h

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction
Geometry
Conjecture (Mueller and Schmidt, 1987)
Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$

Small h

Conjecture (Mueller and Schmidt, 1987)
Let H be the maximal absolute value of the coefficients of F. Then for any $\rho>0$, when $h \leqslant H^{1-\frac{s}{n}-\rho}$, the number of primitive solutions is $\ll C(s, \rho)$

Theorem (Akhtari and Bengoechea, 2020)
The number of positive, primitive solutions of $|F(x, y)| \leqslant h$ when h is small relative to the discriminant of F is $\ll s \log s$. If $n \geqslant s^{2}$, then the number of positive, primitive solutions is $\ll s$.

Types of Solutions

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Types of Solutions

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geornetry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials Binomials Trinomials

Separating Solutions

- Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F

Types of Solutions

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction

Types

Large Solutions

Separating Solutions

■ Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F
■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...

- ...small if $\min (|x|,|y|) \leqslant Y_{S}$

Types of Solutions

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction

Types

Large Solutions

Separating Solutions

■ Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F
■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...
■ ...small if $\min (|x|,|y|) \leqslant Y_{S}$

- ... medium if $\min (|x|,|y|)>Y_{S}$ and $\max (|x|,|y|) \leqslant Y_{L}$

Types of Solutions

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution

Types

Large Solutions
Medium Solutions
Small Solutions In Total

Separating Solutions

■ Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F
■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...
■ ...small if $\min (|x|,|y|) \leqslant Y_{S}$

- ... medium if $\min (|x|,|y|)>Y_{S}$ and $\max (|x|,|y|) \leqslant Y_{L}$
- ...large if $\max (|x|,|y|)>Y_{L}$

Types of Solutions

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution

Types

Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Separating Solutions

■ Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F
■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...

- ...small if $\min (|x|,|y|) \leqslant Y_{S}$
- ... medium if $\min (|x|,|y|)>Y_{S}$ and $\max (|x|,|y|) \leqslant Y_{L}$
- ...large if $\max (|x|,|y|)>Y_{L}$

Counting Large Solutions

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solution

Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Counting Large Solutions

Bounds on the Number of Solutions to Thue's Inequality

Thue's
Inequality
Introduction

Theorem (Mueller and Schmidt, 1987)
The number of primitive large solutions to $|F(x, y)| \leqslant h$ is $\ll s$

Counting Large Solutions

Theorem (Mueller and Schmidt, 1987)

The number of primitive large solutions to $|F(x, y)| \leqslant h$ is $\ll s$

Mueller and Schmidt's Theorem

- This is good enough that there's no need to improve this

Counting Large Solutions

Theorem (Mueller and Schmidt, 1987)

The number of primitive large solutions to $|F(x, y)| \leqslant h$ is $<s$

Mueller and Schmidt's Theorem

- This is good enough that there's no need to improve this
- Technique: archimedean Newton polygons

Medium Solution Setup

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Medium Solution Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geornetry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$

Medium Solution Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$

Medium Solution Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction Geometry Algebra
Results
Counting Techniques
Different Solution Types

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$,

Medium Solution Setup

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

Medium Solution Setup

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction

Counting Techniques

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

$$
\left|\alpha-\frac{x}{y}\right| \leqslant \frac{K}{y^{n / s}} \quad \text { or } \quad\left|\alpha^{*}-\frac{y}{x}\right|<\frac{K}{x^{n / s}}
$$

Medium Solution Setup

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

$$
\left|\alpha-\frac{x}{y}\right| \leqslant \frac{K}{y^{n / s}} \text { or } \quad\left|\alpha^{*}-\frac{y}{x}\right|<\frac{K}{x^{n / s}}
$$

where K depends on F and h

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

$$
\left|\alpha-\frac{x}{y}\right| \leqslant \frac{K}{y^{n / s}} \quad \text { or } \quad\left|\alpha^{*}-\frac{y}{x}\right|<\frac{K}{x^{n / s}}
$$

where K depends on F and h

Moral

There's a set of $\ll s$ algebraic numbers so that any primitive solution to $|F(x, y)| \leqslant h$ with $x, y>Y_{S}$ gives a rational number $\frac{x}{y}$ or $\frac{y}{x}$ which is close to one of those algebraic numbers.

Counting

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Counting

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Goal

Fix $\alpha \in S$ and count the number of rationals which satisfy

$$
\left|\alpha-\frac{x}{y}\right|<\frac{K}{2 y^{n / s}}
$$

Counting

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials Binomials Trinomials

Goal

Fix $\alpha \in S$ and count the number of rationals which satisfy

$$
\left|\alpha-\frac{x}{y}\right|<\frac{K}{2 y^{n / s}}
$$

Setup

- Recall that a (positive) medium solution has

$$
Y_{S}<x, y<Y_{L}
$$

Counting

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials Binomials Trinomials

Goal

Fix $\alpha \in S$ and count the number of rationals which satisfy

$$
\left|\alpha-\frac{x}{y}\right|<\frac{K}{2 y^{n / s}}
$$

Setup

- Recall that a (positive) medium solution has

$$
Y_{S}<x, y<Y_{L}
$$

- Fix α,

Counting

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geomety
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solitions
Medium Solutions

$$
Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}
$$

Counting

Bounds on the Number of Solutions to Thue's Inequality

Thue's
Inequality
Introduction
Geometry
Algebre
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

The Gap Principle

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

Counting

Bounds on the Number of Solutions to Thue's Inequality

The Gap Principle

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\frac{K}{y_{i}^{n / s}}>\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right|
$$

Counting

Bounds on the Number of Solutions to Thue's Inequality

The Gap Principle

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right|
\end{aligned}
$$

Counting

Bounds on the Number of Solutions to Thue's Inequality

The Gap Principle

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right| \\
& \geqslant \frac{1}{y_{i} y_{i+1}}
\end{aligned}
$$

Counting

Bounds on the Number of Solutions to Thue's Inequality

The Gap Principle

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right| \\
& \geqslant \frac{1}{y_{i} y_{i+1}}
\end{aligned}
$$

$$
\text { implying that } y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}
$$

Counting

Bounds on the Number of Solutions to Thue's Inequality

The Gap Principle

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right| \\
& \geqslant \frac{1}{y_{i} y_{i+1}}
\end{aligned}
$$

implying that $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$

- This is known as The Gap Principle

Counting

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebre
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t.

Counting

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction Geometry Algebra Results

Counting Techniques

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

Counting

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction Geometry Algebra Results

Counting Techniques
Different Solution Types
Large Solutions
Medium Solutions

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with
$Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

$$
Y_{L} \geqslant y_{t}
$$

Counting

Bounds on the Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

$$
Y_{L} \geqslant y_{t} \geqslant \frac{y_{t-1}^{\frac{n}{s}-1}}{K}
$$

Counting

Bounds on the Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

$$
Y_{L} \geqslant y_{t} \geqslant \frac{y_{t-1}^{\frac{n}{s}-1}}{K} \geqslant \frac{\left(\frac{y_{t-2}^{\frac{n}{s}-1}}{K}\right)^{\frac{n}{s}-1}}{K}
$$

Counting

Bounds on the Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

$$
Y_{L} \geqslant y_{t} \geqslant \frac{y_{t-1}^{\frac{n}{s}-1}}{K} \geqslant \frac{\left(\frac{y_{t-2}^{\frac{n}{s}-1}}{K}\right)^{\frac{n}{s}-1}}{K}=\frac{y_{t-2}^{\left(\frac{n}{s}-1\right)^{2}}}{K \cdot K^{\frac{n}{s}-1}} \geqslant \cdots
$$

Counting

Bounds on the Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with
$Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

$$
\begin{aligned}
Y_{L} & \geqslant y_{t} \geqslant \frac{y_{t-1}^{\frac{n}{s}-1}}{K} \geqslant \frac{\left(\frac{y_{t-2}^{\frac{n}{s}-1}}{K}\right)^{\frac{n}{s}-1}}{K}=\frac{y_{t-2}^{\left(\frac{n}{s}-1\right)^{2}}}{K \cdot K^{\frac{n}{s}-1}} \geqslant \cdots \\
& \ldots \geqslant \frac{y_{0}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\sum_{j=0}^{t-1}\left(\frac{n}{s}-1\right)^{j}}}
\end{aligned}
$$

Counting

Bounds on the Number of Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with
$Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

$$
\begin{aligned}
& Y_{L} \geqslant y_{t} \geqslant \frac{y_{t-1}^{\frac{n}{s}-1}}{K} \geqslant \frac{\left(\frac{y_{t-2}^{\frac{n}{s}-1}}{K}\right)^{\frac{n}{s}-1}}{K}=\frac{y_{t-2}^{\left(\frac{n}{s}-1\right)^{2}}}{K \cdot K^{\frac{n}{s}-1}} \geqslant \cdots \\
& \cdots \geqslant \frac{y_{0}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\sum_{j=0}^{t-1}\left(\frac{n}{s}-1\right)^{j}}}=\frac{y_{0}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\left.\frac{(n)}{s}-1\right)^{t}-1}} \frac{\frac{n}{s}-2}{s}
\end{aligned}
$$

Counting

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with
$Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t. Sharp bounds on t had not been previously discovered (to my knowledge).

$$
\begin{gathered}
Y_{L} \geqslant y_{t} \geqslant \frac{y_{t-1}^{\frac{n}{s}-1}}{K} \geqslant \frac{\left(\frac{y_{t-2}^{\frac{n}{s}-1}}{K}\right)^{\frac{n}{s}-1}}{K}=\frac{y_{t-2}^{\left(\frac{n}{s}-1\right)^{2}}}{K \cdot K^{\frac{n}{s}-1}} \geqslant \cdots \\
\ldots \geqslant \frac{y_{0}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\sum_{j=0}^{t-1}\left(\frac{n}{s}-1\right)^{j}}}=\frac{y_{0}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\frac{\left(\frac{n}{s}-1\right)^{t}-1}{\frac{n}{s}-2}}} \geqslant \frac{Y_{S}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\frac{\left(\frac{n}{s}-1\right)^{t}-1}{s}-2}}
\end{gathered}
$$

Counting

Bounds on the

Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra

Counting With Gaps

Multiply both sides of

$$
Y_{L} \geqslant \frac{Y_{S}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\frac{\left(\frac{n}{s}-1\right)^{2} t-1}{s}-2}}
$$

Counting

Techniques

Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Counting

Bounds on the

 Number of Solutions to Thue's Inequality
Counting With Gaps

Multiply both sides of

$$
Y_{L} \geqslant \frac{Y_{S}^{\left(\frac{n}{s}-1\right)^{t}}}{K^{\frac{\left(\frac{n}{s}-1\right)^{t}-1}{\frac{n}{s}-2}}}
$$

by $K^{\frac{-1}{\frac{n}{s}-2}}$ to get

$$
Y_{L} K^{\frac{-1}{\frac{n}{s}-2}} \geqslant\left(Y_{S} K^{\frac{-1}{s}-2}\right)^{\left(\frac{n}{s}-1\right)^{t}}
$$

and solve the inequality for t to find...

Counting

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Lemma (K., 2021)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{s}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Counting

Lemma (K., 2021)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{s}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Something more useful

Reducing the above constants into terms of n, s, h, H,

Counting

Bounds on the

 Number of Solutions to Thue's InequalityGreg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions

Lemma (K., 2021)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{s}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Something more useful

Reducing the above constants into terms of n, s, h, H, using $n \geqslant 3 s$,

Counting

Lemma (K., 2021)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{s}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Something more useful

Reducing the above constants into terms of n, s, h, H, using $n \geqslant 3 s$, and applying the fact that there are $\ll s$ roots α that we need to care about, we find...

Counting Medium Solutions

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions
Small Solutions

Theorem (K., 2021)

The number of primitive medium solutions to $|F(x, y)| \leqslant h$ when $n \geqslant 3 s$ is

$$
\begin{aligned}
& \ll s\left(1+\log \left(s+\frac{\log h}{\max (1, \log H)}\right)\right) \\
& \ll s\left(1+\log s+\log ^{+}\left(\frac{\log h}{\max (1, \log H)}\right)\right)
\end{aligned}
$$

Counting Medium Solutions

Theorem (K., 2021)

The number of primitive medium solutions to $|F(x, y)| \leqslant h$ when $n \geqslant 3 s$ is

$$
\begin{aligned}
& \ll s\left(1+\log \left(s+\frac{\log h}{\max (1, \log H)}\right)\right) \\
& \ll s\left(1+\log s+\log ^{+}\left(\frac{\log h}{\max (1, \log H)}\right)\right)
\end{aligned}
$$

Recall:

Conjecture

If $h \leqslant H^{1-\frac{s}{n}-\rho}$, then the number of primitive solutions to $|F(x, y)| \leqslant h$ is bounded by a function only of s and ρ

Counting Small Solutions

Bounds on the Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques

Different Solution

Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Counting Small Solutions

Thue's
Inequality
Introduction
Geornetry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solution
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Challenges

Small solutions make up the bulk of the solutions and are tough to count

Counting Small Solutions

Challenges

Small solutions make up the bulk of the solutions and are tough to count

Theorem (Saradha-Sharma, 2017)

When $n>4 s e^{2 \Phi}$, the number of primitive small solutions to $|F(x, y)| \leqslant h$ is

$$
\ll s e^{\Phi} h^{2 / n}
$$

Counting Small Solutions

Challenges

Small solutions make up the bulk of the solutions and are tough to count

Theorem (Saradha-Sharma, 2017)

When $n>4 s e^{2 \Phi}$, the number of primitive small solutions to $|F(x, y)| \leqslant h$ is

$$
\ll s e^{\Phi} h^{2 / n}
$$

"Definition"

Here, Φ measures the "sparsity" of F and satisfies $\log ^{3} s \leqslant e^{\Phi} \ll s$

Recap

Bounds on the
Number of Solutions to Thue's Inequality

Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Bounds for Different Types of Solutions

Recall:

Recap

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Bounds for Different Types of Solutions

Recall:

- The number of large primitive solutions is $\ll s$

Recap

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution Types
Large Solutions
Medium Solutions Small Solutions In Total

Bounds for Different Types of Solutions

Recall:

- The number of large primitive solutions is $\ll s$
- The number of medium primitive solutions is $\ll s\left(1+\log s+\log ^{+}\left(\frac{\log h}{\max (1, \log H)}\right)\right)$ when $n \geqslant 3 s$.

Recap

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction

Bounds for Different Types of Solutions

Recall:

- The number of large primitive solutions is $\ll s$
- The number of medium primitive solutions is $\ll s\left(1+\log s+\log ^{+}\left(\frac{\log h}{\max (1, \log H)}\right)\right)$ when $n \geqslant 3 s$.
■ The number of small primitive solutions is $\ll s e^{\Phi} h^{2 / n}$ when $n>4 s e^{2 \Phi}$.

Summing Up

As a consequence:

Theorem (K., 2022)

When $n>4 s e^{2 \Phi}$, the number of primitive solutions to $|F(x, y)| \leqslant h$ is

$$
\ll s e^{\Phi}\left(1+\log ^{+}\left(\frac{\log h^{1 / \log ^{3} s}}{\max (1, \log H)}\right)\right) h^{2 / n}
$$

Compare to:

Theorem (Mueller and Schmidt, 1987)

The number of integer pair solutions to $|F(x, y)| \leqslant h$ is

$$
\ll s^{2} h^{2 / n}\left(1+\log h^{1 / n}\right)
$$

Binomials

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials
Binomials
Trinomials

Binomials

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geornetry
Algebra
Results
Counting

Techniques

Different Solution
Types
Large Soliutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Binomials

In the specific case where $s=1, F(x, y)=a x^{n}-b y^{n}$. Then

Binomials

Bounds on the

Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry)
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Binomials

In the specific case where $s=1, F(x, y)=a x^{n}-b y^{n}$. Then

Theorem (Mueller, 1986)

The number of positive primitive solutions to $\left|a x^{n}-b y^{n}\right| \leqslant h$ when $h \leqslant H^{1-\frac{1}{n}-\rho}$ and $0<\rho<1$ is $<K(\rho)$

Binomials

Binomials

In the specific case where $s=1, F(x, y)=a x^{n}-b y^{n}$. Then

Theorem (Mueller, 1986)

The number of positive primitive solutions to $\left|a x^{n}-b y^{n}\right| \leqslant h$ when $h \leqslant H^{1-\frac{1}{n}-\rho}$ and $0<\rho<1$ is $<K(\rho)$

Theorem (Bennett, 2001)
$a x^{n}-b y^{n}=1$ has at most one solution in positive integers x and y

Trinomials

Bounds on the
Number of Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Binomials
Trinomials

Trinomials

Bounds on the

Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Recall that we showed the Gap Principle previously: when $\frac{x}{y}$ and $\frac{x^{\prime}}{y^{\prime}}$ both approximate the same root of f and $y^{\prime} \geqslant y>Y_{S}$, we had

$$
y^{\prime}>\frac{y^{n / s-1}}{K}
$$

Trinomials

Bounds on the

Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution Types
Large Solutions Medium Solutions Small Solutions In Total

Recall that we showed the Gap Principle previously: when $\frac{x}{y}$ and $\frac{x^{\prime}}{y^{\prime}}$ both approximate the same root of f and $y^{\prime} \geqslant y>Y_{S}$, we had

$$
y^{\prime}>\frac{y^{n / s-1}}{K}
$$

In general, K is very large.

Trinomials

Recall that we showed the Gap Principle previously: when $\frac{x}{y}$ and $\frac{x^{\prime}}{y^{\prime}}$ both approximate the same root of f and $y^{\prime} \geqslant y>Y_{S}$, we had

$$
y^{\prime}>\frac{y^{n / s-1}}{K}
$$

In general, K is very large.

Theorem (Thomas, 2000)

When $s=2, K$ can be improved substantially and Y_{S} can be taken to be less than 1 (eliminating any small solutions). As a consequence, there are explicit bounds on the number of solutions to $|F(x, y)|=1$. If $n \geqslant 39$, then there are no more than 48 solutions to $|F(x, y)|=1$.

Trinomials

Bounds on the
Number of
Solutions to Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total

Theorem (K., 2021)

When $s=2$, there are no more than $C(n)$ solutions to $|F(x, y)|=1$ where $C(n)$ is defined by

n	$6-7$	8	$9-11$	$12-16$	$17-38$	$39-218$	$\geqslant 219$
$C(n)$	128	96	72	64	56	48	40

See https://arxiv.org/abs/2210.09631 for more details.

Trinomial Computations

Number of Solutions to

Thue's
Inequality
Greg Knapp

Thue's
Inequality
Introduction
Geometry
Algebra
Results
Counting Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Trinomials

Computations indicate that for the following degrees (vertical axis) and heights (horizontal axis), the maximum number of solutions to $|F(x, y)|=1$ is given in the following table:

H	1	2	3	4	5	6	7	8	9	10	11	12	13
$n=6$	8	6	8	8	6	6	6	6	8	6	6	6	6
$n=7$	8	6	8	8	6	6	6	6	8	6	6	6	6
$n=8$	8	6	8	8	6	6	6	6	8	6	6	6	6
$n=9$	8	6	8	8	6	6	6	6	8	6	6	-	-
$n=10$	8	6	8	8	6	6	6	6	8	-	-	-	-
$n=11$	8	6	8	8	6	6	6	6	8	-	-	-	-
$n=12$	8	6	8	8	6	6	6	-	-	-	-	-	-
$n=13$	8	6	8	8	6	6	-	-	-	-	-	-	-
$n=14$	8	6	8	8	6	6	-	-	-	-	-	-	-
$n=15$	8	6	8	-	-	-	-	-	-	-	-	-	-

Thank you!

Bounds on the
Number of
Solutions to Thue's Inequality

Greg Knapp

Thue's

Inequality
Introduction
Geometry
Algebra
Questions?
Counting
Techniques
Different Solution
Types
Large Solutions
Medium Solutions
Small Solutions
In Total
Binomials and Trinomials

Trinomials

