Some new terminology for something we’ve already seen: Given field extensions K/F, K'/F, a (ring) isomorphism $K \to K'$ that sends every element of F to itself is called an F-isomorphism. If $K = K'$, we’d call it an F-automorphism of K.

1. Find all of the \mathbb{R}-automorphisms of \mathbb{C}. (Hint: $i^2 = -1$)

2. Use the proof of the primitive element theorem to find elements of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ and $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ that are primitive over \mathbb{Q}.

3. Any questions about the upcoming exam? Any thoughts or comments on what could make the last part of the semester as helpful and productive as possible for you?